[1] |
BISWAS S, DUAN J, NEPAL D, et al. Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures[J]. Nano Letters, 2013, 13(5): 2220-2225. doi: 10.1021/nl4007358
|
[2] |
HUANG L L, CHEN X Z, BAI B F, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light Science &Applications, 2013, 2(3): e70. doi: 10.1038/lsa.2013.26
|
[3] |
LIN J, MUELLER J P B, WANG Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334. doi: 10.1126/science.1233746
|
[4] |
RICCIARDI A, CONSOLES M, QUERO G, et al. Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices[J]. Acs Photonics, 2014, 1(1): 69-78. doi: 10.1021/ph400075r
|
[5] |
ROGACHEVA A V, FEDOTOV V A, SCHWANECKE A S, et al. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure[J]. Physical Review Letters, 2006, 97(17): 177401. doi: 10.1103/PhysRevLett.97.177401
|
[6] |
ZHANG S, PARK Y-S, LI J, et al. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2): 023901. doi: 10.1103/PhysRevLett.102.023901
|
[7] |
FANG Y, VERRE R, SHAO L, et al. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators[J]. Nano Letters, 2016, 16(8): 5183-5190. doi: 10.1021/acs.nanolett.6b02154
|
[8] |
FU T, QU Y, WANG T R, et al. Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition[J]. Journal of Physical Chemistry C, 2017, 121(2): 1299-1304. doi: 10.1021/acs.jpcc.6b10833
|
[9] |
HE Y, LARSEN G K, INGRAM W, et al. Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers[J]. Nano Letters, 2014, 14(4): 1976-1981. doi: 10.1021/nl404823z
|
[10] |
HE Y Z, LAWRENCE K, INGRAM W, et al. Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device[J]. Acs Photonics, 2015, 2(9): 1246-1252. doi: 10.1021/acsphotonics.5b00196
|
[11] |
KOLKOWSKI R, PETTI L, RIPPA M, et al. Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale[J]. Acs Photonics, 2015, 2(7): 899-906. doi: 10.1021/acsphotonics.5b00090
|
[12] |
BOCHENKOV V E, SUTHERLAND D S. Chiral plasmonic nanocrescents: large-area fabrication and optical properties[J]. Optics Express, 2018, 26(21): 27101-27108. doi: 10.1364/OE.26.027101
|
[13] |
MARK A G, GIBBS J G, LEE T C, et al. Hybrid nanocolloids with programmed three-dimensional shape and material composition[J]. Nature Materials, 2013, 12(9): 802-807. doi: 10.1038/nmat3685
|
[14] |
HAN C, YANG L, YE P, et al. Three dimensional chiral plasmon rulers based on silver nanorod trimers[J]. Optics Express, 2018, 26(8): 10315-10325. doi: 10.1364/OE.26.010315
|
[15] |
GOERLITZER E S A, MOHAMMADI R, NECHAYEV S, et al. Large-area 3D plasmonic crescents with tunable chirality[J]. Advanced Optical Materials, 2019, 7(15): 1801770. doi: 10.1002/adom.201801770
|
[16] |
GANSEL J K, THIEL M, RILL M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515. doi: 10.1126/science.1177031
|
[17] |
SCHNELL M, SARRIUGARTE P, NEUMAN T, et al. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces[J]. Nano Letters, 2016, 16(1): 663-670. doi: 10.1021/acs.nanolett.5b04416
|
[18] |
ZHANG S J, LI Y, LIU Z-P, et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum[J]. Applied Physics Letters, 2014, 105(6): 061101-061104. doi: 10.1063/1.4893007
|
[19] |
NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials: beyond gold and silver[J]. Advanced Materials, 2013, 25(24): 3264-3294. doi: 10.1002/adma.201205076
|
[20] |
LYNCH D W, HUNTER W R. Handbook of Optical Constants of Solids[M]. Academic, 1985.
|