留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氧化铟锡的风扇型中红外手性超材料及其圆二向色性

朱叶欣 李亚楠 施维捷 张文涛 闫长春

朱叶欣, 李亚楠, 施维捷, 张文涛, 闫长春. 基于氧化铟锡的风扇型中红外手性超材料及其圆二向色性[J]. 中国光学, 2020, 13(4): 722-727. doi: 10.37188/CO.2019-0190
引用本文: 朱叶欣, 李亚楠, 施维捷, 张文涛, 闫长春. 基于氧化铟锡的风扇型中红外手性超材料及其圆二向色性[J]. 中国光学, 2020, 13(4): 722-727. doi: 10.37188/CO.2019-0190
ZHU Ye-xin, LI Ya-nan, SHI Wei-jie, ZHANG Wen-tao, YAN Chang-chun. Fan-shaped mid-infrared chiral metamaterials based on indium tin oxide and their circular dichroism[J]. Chinese Optics, 2020, 13(4): 722-727. doi: 10.37188/CO.2019-0190
Citation: ZHU Ye-xin, LI Ya-nan, SHI Wei-jie, ZHANG Wen-tao, YAN Chang-chun. Fan-shaped mid-infrared chiral metamaterials based on indium tin oxide and their circular dichroism[J]. Chinese Optics, 2020, 13(4): 722-727. doi: 10.37188/CO.2019-0190

基于氧化铟锡的风扇型中红外手性超材料及其圆二向色性

doi: 10.37188/CO.2019-0190
基金项目: 国家自然科学基金项目(No.61771227);江苏师范大学大学生创新创业训练计划项目(No.XSJCX8049)
详细信息
    作者简介:

    朱叶欣(1998—)女,江苏盐城人,本科,主要从事微纳米结构材料的设计及其电磁调控特性研究。E-mail:1027781149@qq.com

    李亚楠(1998—)女,江苏南京人,大学生,主要从事微纳米结构材料的设计及其电磁调控特性研究。Email:3131857055@qq.com

    张文涛(1976—),女,江苏徐州人,讲师,2007年于中国矿业大学获得硕士学位,主要从事微纳结构材料及器件方面的研究。Email:zhangwentao@xzit.edu.cn

    闫长春(1972—),男,江苏新沂人,教授,1996年于徐州师范大学获得学士学位;2000年于苏州大学获得硕士学位;2009年于东南大学获得博士学位;主要从事微纳结构材料及器件方面的研究。E-mail:yhchangchun@163.com

    通讯作者:

    闫长春(1972—),男,江苏新沂人,教授,1996年于徐州师范大学获得学士学位;2000年于苏州大学获得硕士学位;2009年于东南大学获得博士学位;主要从事微纳结构材料及器件方面的研究。E-mail:yhchangchun@163.com

  • 中图分类号: TN214

Fan-shaped mid-infrared chiral metamaterials based on indium tin oxide and their circular dichroism

Funds: Supported by National Natural Science Foundation of China (No.61771227); Innovation and Entrepreneurship Training Program for College Students in Jiangsu Normal University (No.XSJCX8049)
More Information
  • 摘要: 本文设计了一种中红外波段手性超材料以克服传统中红外激光偏振态调控所使用的控制元件体积大、成本高等不足。利用中红外等离激元材料氧化铟锡(ITO)设计风扇型手性结构,并研究了该结构在中红外波段的圆二向色性(CD)。通过改变扇叶层填充材料、扇叶厚度、扇叶大小、扇叶数量以及扇叶的材料,讨论结构的CD变化情况。模拟结果表明:当填充材料为硅、扇叶为6片时,选取合适的扇叶厚度和大小,在5.3 μm附近获得最强的CD信号,为0.052。此外,与贵金属银、金相比,由ITO构成的结构展现出良好的宽带圆二向色性,这为中红外波段宽带偏振态调控器件的设计提供了新的思路。
  • 图  1  由6个相同的ITO扇叶组成的手性结构单元示意图

    Figure  1.  Schematic diagram of a chiral structural unit composed of six identical ITO fan blades

    图  2  圆二色性与波长的关系

    Figure  2.  Circular dichroism as a function of wavelength

    图  3  填充层为硅和空气时圆二色性与波长关系

    Figure  3.  Circular dichroism as a function of wavelength when the fan blade layer is filled with Si and air, respectively

    图  4  扇叶厚度变化时圆二色性随波长变化图

    Figure  4.  Circular dichroism as a function of wavelength when the thickness of the fan blades is changed

    图  5  扇叶大小变化时圆二色性随波长变化图

    Figure  5.  Circular dichroism as a function of wavelength when the size of the fan blades is changed

    图  6  扇叶数量变化时圆二色性随波长的变化图

    Figure  6.  Circular dichroism as a function of wavelength when the number of the fan blades is changed

    图  7  扇叶材料变化时圆二色性变化关系图

    Figure  7.  Circular dichroism as a function of wavelength when the material of the fan blades is changed

  • [1] BISWAS S, DUAN J, NEPAL D, et al. Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures[J]. Nano Letters, 2013, 13(5): 2220-2225. doi: 10.1021/nl4007358
    [2] HUANG L L, CHEN X Z, BAI B F, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light Science &Applications, 2013, 2(3): e70. doi: 10.1038/lsa.2013.26
    [3] LIN J, MUELLER J P B, WANG Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334. doi: 10.1126/science.1233746
    [4] RICCIARDI A, CONSOLES M, QUERO G, et al. Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices[J]. Acs Photonics, 2014, 1(1): 69-78. doi: 10.1021/ph400075r
    [5] ROGACHEVA A V, FEDOTOV V A, SCHWANECKE A S, et al. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure[J]. Physical Review Letters, 2006, 97(17): 177401. doi: 10.1103/PhysRevLett.97.177401
    [6] ZHANG S, PARK Y-S, LI J, et al. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2): 023901. doi: 10.1103/PhysRevLett.102.023901
    [7] FANG Y, VERRE R, SHAO L, et al. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators[J]. Nano Letters, 2016, 16(8): 5183-5190. doi: 10.1021/acs.nanolett.6b02154
    [8] FU T, QU Y, WANG T R, et al. Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition[J]. Journal of Physical Chemistry C, 2017, 121(2): 1299-1304. doi: 10.1021/acs.jpcc.6b10833
    [9] HE Y, LARSEN G K, INGRAM W, et al. Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers[J]. Nano Letters, 2014, 14(4): 1976-1981. doi: 10.1021/nl404823z
    [10] HE Y Z, LAWRENCE K, INGRAM W, et al. Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device[J]. Acs Photonics, 2015, 2(9): 1246-1252. doi: 10.1021/acsphotonics.5b00196
    [11] KOLKOWSKI R, PETTI L, RIPPA M, et al. Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale[J]. Acs Photonics, 2015, 2(7): 899-906. doi: 10.1021/acsphotonics.5b00090
    [12] BOCHENKOV V E, SUTHERLAND D S. Chiral plasmonic nanocrescents: large-area fabrication and optical properties[J]. Optics Express, 2018, 26(21): 27101-27108. doi: 10.1364/OE.26.027101
    [13] MARK A G, GIBBS J G, LEE T C, et al. Hybrid nanocolloids with programmed three-dimensional shape and material composition[J]. Nature Materials, 2013, 12(9): 802-807. doi: 10.1038/nmat3685
    [14] HAN C, YANG L, YE P, et al. Three dimensional chiral plasmon rulers based on silver nanorod trimers[J]. Optics Express, 2018, 26(8): 10315-10325. doi: 10.1364/OE.26.010315
    [15] GOERLITZER E S A, MOHAMMADI R, NECHAYEV S, et al. Large-area 3D plasmonic crescents with tunable chirality[J]. Advanced Optical Materials, 2019, 7(15): 1801770. doi: 10.1002/adom.201801770
    [16] GANSEL J K, THIEL M, RILL M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515. doi: 10.1126/science.1177031
    [17] SCHNELL M, SARRIUGARTE P, NEUMAN T, et al. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces[J]. Nano Letters, 2016, 16(1): 663-670. doi: 10.1021/acs.nanolett.5b04416
    [18] ZHANG S J, LI Y, LIU Z-P, et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum[J]. Applied Physics Letters, 2014, 105(6): 061101-061104. doi: 10.1063/1.4893007
    [19] NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials: beyond gold and silver[J]. Advanced Materials, 2013, 25(24): 3264-3294. doi: 10.1002/adma.201205076
    [20] LYNCH D W, HUNTER W R. Handbook of Optical Constants of Solids[M]. Academic, 1985.
  • 加载中
图(7)
计量
  • 文章访问数:  919
  • HTML全文浏览量:  506
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 修回日期:  2019-10-15
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回