留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湍流大气中激光相干探测回波光强与空间相干特性研究

任建迎 孙华燕 赵延仲 张来线

任建迎, 孙华燕, 赵延仲, 张来线. 湍流大气中激光相干探测回波光强与空间相干特性研究[J]. 中国光学(中英文), 2020, 13(4): 728-736. doi: 10.37188/CO.2019-0194
引用本文: 任建迎, 孙华燕, 赵延仲, 张来线. 湍流大气中激光相干探测回波光强与空间相干特性研究[J]. 中国光学(中英文), 2020, 13(4): 728-736. doi: 10.37188/CO.2019-0194
REN Jian-ying, SUN Hua-yan, ZHAO Yan-zhong, ZHANG Lai-xian. Light intensity and spatial coherence characteristics of laser coherent detection in a turbulent atmosphere[J]. Chinese Optics, 2020, 13(4): 728-736. doi: 10.37188/CO.2019-0194
Citation: REN Jian-ying, SUN Hua-yan, ZHAO Yan-zhong, ZHANG Lai-xian. Light intensity and spatial coherence characteristics of laser coherent detection in a turbulent atmosphere[J]. Chinese Optics, 2020, 13(4): 728-736. doi: 10.37188/CO.2019-0194

湍流大气中激光相干探测回波光强与空间相干特性研究

基金项目: 国家自然科学基金青年科学基金资助项目(No. 61805283)
详细信息
    作者简介:

    任建迎(1988—),男,山东冠县人,博士研究生,2014年于装备学院获得学士学位,2017年于航天工程大学获得硕士学位,现为航天工程大学博士研究生,主要从事激光相干探测识别方面的研究。E-mail:rjyfly@126.com

  • 中图分类号: TN29

Light intensity and spatial coherence characteristics of laser coherent detection in a turbulent atmosphere

Funds: Supported by the Young Scientists Fund of the National Natural Science Foundation of China ( No. 61805283)
More Information
    Corresponding author: rjyfly@126.com
  • 摘要: 本文利用广义惠更斯-菲涅尔原理结合Goodman目标散射理论,推导出了激光探测中目标反射光的交叉谱密度函数解析式,并进一步得到了目标反射光的光强分布和空间相干长度表达式。利用得到的表达式在湍流大气条件下,分析了不同光源参数和目标反射光参数对目标反射光光强分布和相干长度的影响。研究结果表明:光源相干长度对归一化反射光强影响较小;光源束腰半径和反射光斑半径值越大接收光的相干长度值越小;随着传输距离的增加,相干长度增加越来越缓慢;在弱湍流大气传输过程中,光源参数对接收光的影响占主导作用,光源束腰半径越大接收光的光强和相干长度值越小;在强湍流大气传输过程中,大气湍流对反射光的影响起主导作用。

     

  • 图 1  不同波长的归一化光强随传输距离的变化曲线

    Figure 1.  Curves of normalized intensity varying with transmission distance with different wavelengths

    图 2  不同湍流强度和${{{{w_0}} / {{\sigma _0}}}}$时,接收平面上的归一化光强分布

    Figure 2.  Normalized intensity distributions at the receiving plane with different $C_n^2$ and ${{{{w_0}} / {{\sigma _0}}}}$

    图 3  不同湍流强度和${{{w_T}} / {{w_0}}}$时,中心接收光强随传输距离z的变化曲线

    Figure 3.  Center average received light intensity varying with transmission distance with different $C_n^2 $ and ${{{w_T}} / {{w_0}}}$

    图 4  不同湍流强度下3种波长接收光场的相干长度变化曲线

    Figure 4.  Coherent length curves of the received light field varying with the wavelength and $C_n^2 $

    图 5  不同光源束宽和湍流强度时,目标反射光的相干长度变化曲线

    Figure 5.  Coherent length curves of target reflected light varying with the beam width and turbulence intensity

    图 6  不同湍流强度下,目标反射光与光源不同束腰比时,目标反射光的空间相干长度变化曲线

    Figure 6.  Spatial coherence length curves of the reflected light varying with beam waist ratio under different $C_n^2 $

    表  1  数值模拟参数

    Table  1.   Parameters of numerical simulation

    系统参数符号数值
    激光波长$\lambda $532 nm、1 064 nm、1 550 nm
    束腰半径${w_0}$3 cm
    湍流内尺度${l_0}$1~5 cm
    束腰半径与相干长度比${{{w_0}}/ {{\sigma _0}}}$10−4~0.1
    大气结构常数$C_n^2$$0 : {10^{ - 15} }{\rm{m}^{ { { - 2} / 3} } }$
    目标反射率F0~1
    下载: 导出CSV
  • [1] LU W, LIU L R, SUN J F, et al. Change in degree of coherence of partially coherent electromagnetic beams propagating through atmospheric turbulence[J]. Optics Communications, 2007, 271(1): 1-8. doi: 10.1016/j.optcom.2006.09.058
    [2] 周鑫, 姜鹏, 孙剑峰, 等. 基于点目标大气闪烁的目标回波分布研究[J]. 红外与激光工程,2017,46(S1):74-81.

    ZHOU X, JIANG P, SUN J F, et al. Investigation on the distribution of target echo based on point target atmospheric scintillation[J]. Infrared and Laser Engineering, 2017, 46(S1): 74-81. (in Chinese)
    [3] COLLETT E, WOLF E. Beams generated by Gaussian quasi-homogeneous sources[J]. Optics Communications, 1980, 32(1): 27-31. doi: 10.1016/0030-4018(80)90307-7
    [4] KOROTKOVA O, ANDREWS L C, PHILLIPS R L. Lidar model for a rough-surface target: method of partial coherence[J]. Proceedings of SPIE, 2004, 5237: 49-60. doi: 10.1117/12.515086
    [5] GOODMAN J W. Statistical properties of laser speckle patterns[M]. DAINTY J C. Laser Speckle and Related Phenomena. Berlin, Heidelberg: Springer, 1975.
    [6] KOROTKOVA O, CAI Y, WATSON E. Stochastic electromagnetic beams for LIDAR systems operating through turbulent atmosphere[J]. Applied Physics B, 2009, 94(4): 681-690. doi: 10.1007/s00340-009-3404-4
    [7] RICKLIN J C, DAVIDSON F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. Journal of the Optical Society of America A, 2002, 19(9): 1794-1802. doi: 10.1364/JOSAA.19.001794
    [8] RICKLIN J C, DAVIDSON F M. Atmospheric optical communication with a Gaussian Schell beam[J]. Journal of the Optical Society of America A, 2003, 20(5): 856-866. doi: 10.1364/JOSAA.20.000856
    [9] WU J, BOARDMAN A D. Coherence length of a Gaussian-Schell beam and atmospheric turbulence[J]. Journal of Modern Optics, 1991, 38(7): 1355-1363. doi: 10.1080/09500349114551521
    [10] FRIBERG A T, SUDOL R J. Propagation parameters of Gaussian Schell-model beams[J]. Optics Communications, 1982, 41(6): 383-387. doi: 10.1016/0030-4018(82)90161-4
    [11] LI M N, TAN L Y, MA J, et al. Performance analysis of a free-space laser communication system with a Gaussian Schell model[J]. Journal of Modern Optics, 2015, 62(19): 1608-1615. doi: 10.1080/09500340.2015.1054907
    [12] 柯熙政, 王婉婷. 部分相干光在大气湍流中的光束扩展及角扩展[J]. 红外与激光工程,2015,44(9):2726-2733. doi: 10.3969/j.issn.1007-2276.2015.09.032

    KE X ZH, WANG W T. Expansion and angular spread of partially coherent beam propagating in atmospheric turbulence[J]. Infrared and Laser Engineering, 2015, 44(9): 2726-2733. (in Chinese) doi: 10.3969/j.issn.1007-2276.2015.09.032
    [13] WU ZH S, LI Y Q. Scattering of a partially coherent Gaussian-Schell beam from a diffuse target in slant atmospheric turbulence[J]. Journal of the Optical Society of America A, 2011, 28(7): 1531-1539. doi: 10.1364/JOSAA.28.001531
    [14] 李成强, 张合勇, 王挺峰, 等. 高斯-谢尔模光束在大气湍流中传输的相干特性研究[J]. 物理学报,2013,62(22):224203. doi: 10.7498/aps.62.224203

    LI CH Q, ZHANG H Y, WANG T F, et al. Investigation on coherence characteristics of Gauss-Schell model beam propagating in atmospheric turbulence[J]. Acta Physica Sinica, 2013, 62(22): 224203. (in Chinese) doi: 10.7498/aps.62.224203
    [15] LI M N, TAN L Y, MA J, et al. Statistical distribution of the optical intensity obtained using a Gaussian Schell model for space-to-ground link laser communications[J]. Journal of Modern Optics, 2016, 63(10): 921-931. doi: 10.1080/09500340.2015.1111452
    [16] 向宁静, 王明军, 王太荣. 部分相干高斯-谢尔光束在大气湍流中的平均强度与展宽[J]. 激光杂志,2012,33(5):4-6. doi: 10.3969/j.issn.0253-2743.2012.05.003

    XIANG N J, WANG M J, WANG T R. Average intensity and spreading of a partially coherent Gaussian Schell-model beam propagation through atmospheric turbulence[J]. Laser Journal, 2012, 33(5): 4-6. (in Chinese) doi: 10.3969/j.issn.0253-2743.2012.05.003
    [17] 埃米尔·沃尔夫. 光的相干与偏振理论导论[M]. 蒲继雄, 译. 北京: 北京大学出版社, 2014.

    WOLF E. Introduction to the Theory of Coherence and Polarization of light[M]. PU J X, trans. Beijing: Beijing University Press, 2014. (in Chinese)
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2251
  • HTML全文浏览量:  1186
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 修回日期:  2019-11-21
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回