留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光放大器对光载微波信号传输效率的改善

肖永川 王超 张浩 张亚标 庾财斌 瞿鹏飞 孙力军

肖永川, 王超, 张浩, 张亚标, 庾财斌, 瞿鹏飞, 孙力军. 光放大器对光载微波信号传输效率的改善[J]. 中国光学(中英文), 2020, 13(5): 995-1000. doi: 10.37188/CO.2019-0195
引用本文: 肖永川, 王超, 张浩, 张亚标, 庾财斌, 瞿鹏飞, 孙力军. 光放大器对光载微波信号传输效率的改善[J]. 中国光学(中英文), 2020, 13(5): 995-1000. doi: 10.37188/CO.2019-0195
XIAO Yong-chuan, WANG chao, ZHANG hao, ZHANG Ya-biao, YU Cai-bin, QU Peng-fei, SUN Li-jun. Improvement of transmission efficiency in microwave photonic links using EDFA[J]. Chinese Optics, 2020, 13(5): 995-1000. doi: 10.37188/CO.2019-0195
Citation: XIAO Yong-chuan, WANG chao, ZHANG hao, ZHANG Ya-biao, YU Cai-bin, QU Peng-fei, SUN Li-jun. Improvement of transmission efficiency in microwave photonic links using EDFA[J]. Chinese Optics, 2020, 13(5): 995-1000. doi: 10.37188/CO.2019-0195

光放大器对光载微波信号传输效率的改善

基金项目: 重庆市博士后科学基金项目(No. CSTC2019jcyj-bshx0103)
详细信息
    作者简介:

    肖永川(1987—),男,重庆人,博士,高级工程师,2015年于吉林大学获得博士学位,主要从事微波光传输与处理技术方面的研究。E-mail:xycwqy@163.com

  • 中图分类号: TN29

Improvement of transmission efficiency in microwave photonic links using EDFA

Funds: Supported by Postdoctoctoral Science Foundation of Chongqing (No. CSTC2019jcyj-bshx0103)
More Information
  • 摘要: 针对现有微波光传输系统存在电光转换效率不足的问题,本文设计了一种基于调制器低偏与光放大器相结合的光发射结构,通过充分利用链路增益与光功率水平之间的平方关系以及低偏链路传输效率与光功率呈近似线性变化的特点,实现了光载微波信号传输效率的有效提升。经过测试可知,本方案较常规正交点传输方式在射频增益方面提高了13.5 dB,同时不会使噪声系数产生明显恶化,并且本方案可以采用现成产品以实现低成本制作,在电子信息装备中具有广泛的应用潜力。

     

  • 图 1  微波光传输链路构成

    Figure 1.  The structure of microwave optical transmission link

    图 2  调制器出光功率及链路增益随偏置点位置的变化关系

    Figure 2.  The output optical power of modulator and link RF gain varying with modulator’s bias point

    图 3  光放大器有效增益与链路附加增益随偏置点位置的变化关系

    Figure 3.  The gain provided by EDFA and the additional link gain varying with modulator's bias point

    图 4  (a)光发射模块与(b)光电探测器

    Figure 4.  (a) Optical transmitter and (b) photo-detector

    图 5  不同偏置点条件下链路增益随频率的变化情况。(a)不加光放大器;(b)加光放大器;(c)在1 GHz频点处增益随偏置点位置的变化情况

    Figure 5.  The RF gain versus RF frequency under the condition of different bias points. (a) Without EDFA; (b) with EDFA; (c) gain versus position of bias point at the frequency of 1 GHz.

    图 6  不同偏置点条件下链路噪声系数随频率的变化情况。(a)不加光放大器;(b)加光放大器;(c)在1 GHz频点处噪声系数随偏置点位置的变化情况

    Figure 6.  Noise figure versus RF frequency under the condition of different bias points. (a) Without EDFA; (b) with EDFA;(c) noise figuer versus position of bias point at the frequency of 1 GHz.

  • [1] CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330. doi: 10.1038/nphoton.2007.89
    [2] YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335. doi: 10.1109/JLT.2008.2009551
    [3] 李丽, 林玉池, 付鲁华, 等. 光纤光栅空分光复用传感系统的研究[J]. 光学 精密工程,2007,15(4):473-477.

    LI L, LIN Y CH, FU L H, et al. Research on spatial division multiplexing of fiber Bragg grating sensors[J]. Optics and Precision Engineering, 2007, 15(4): 473-477. (in Chinese)
    [4] HERVÁS J, RICCHIUTI A L, LI W, et al. Microwave photonics for optical sensors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 5602013.
    [5] PAN SH L, YAO J P. Photonics-based broadband microwave measurement[J]. Journal of Lightwave Technology, 2017, 35(16): 3498-3513. doi: 10.1109/JLT.2016.2587580
    [6] 李冠鹏, 王辉, 张邦宏, 等. 用于雷达回波仿真的小型化微波光纤延迟线[J]. 光学 精密工程,2017,25(5):1206-1212. doi: 10.3788/OPE.20172505.1206

    LI G P, WANG H, ZHANG B H, et al. Compact microwave fiber delay line for radar echo simulation[J]. Optics and Precision Engineering, 2017, 25(5): 1206-1212. (in Chinese) doi: 10.3788/OPE.20172505.1206
    [7] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341-345. doi: 10.1038/nature13078
    [8] 王云新, 李静楠, 杜浩峥, 等. 基于强度-相位级联调制的微波光子下变频法[J]. 光学 精密工程,2017,25(4):827-834. doi: 10.3788/OPE.20172504.0827

    WANG Y X, LI J N, DU H ZH, et al. Microwave photonic down-conversion method using intensity-phase cascaded modulation[J]. Optics and Precision Engineering, 2017, 25(4): 827-834. (in Chinese) doi: 10.3788/OPE.20172504.0827
    [9] ZOU X H, BAI W L, CHEN W, et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing[J]. Journal of Lightwave Technology, 2018, 36(19): 4337-4346. doi: 10.1109/JLT.2018.2813663
    [10] SALES S, BARREA D, HERVÁS J, et al.. Microwave photonics for optical fiber sensors[C]. Proceedings of 2019 Optical Fiber Communications Conference and Exhibition, IEEE, 2019: 1-3.
    [11] CAPMANY J, LI G F, LIM C, et al. Microwave photonics: current challenges towards widespread application[J]. Optics Express, 2013, 21(19): 22862-22867. doi: 10.1364/OE.21.022862
    [12] KARIM A, DEVENPORT J. High dynamic range microwave photonic links for RF signal transport and RF-IF conversion[J]. Journal of Lightwave Technology, 2008, 26(15): 2718-2724. doi: 10.1109/JLT.2008.927603
    [13] LI Y F, XU L T, JIN SH L, et al. Wideband OPLL photonic integrated circuit enabling ultrahigh dynamic range PM RF/photonic link[J]. Optica, 2019, 6(8): 1078-1083. doi: 10.1364/OPTICA.6.001078
    [14] KARIM A, DEVENPORT J. Optimization of linearity figure of merit for microwave photonic links[J]. IEEE Photonics Technology Letters, 2009, 21(13): 950-952. doi: 10.1109/LPT.2009.2021072
    [15] URICK V J, BUCHOLTZ F, MCKINNEY J D, et al. Long-haul analog photonics[J]. Journal of Lightwave Technology, 2011, 29(8): 1182-1205. doi: 10.1109/JLT.2011.2119292
  • 加载中
图(6)
计量
  • 文章访问数:  1776
  • HTML全文浏览量:  611
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 修回日期:  2019-11-11
  • 网络出版日期:  2020-06-29
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回