留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of turbulent atmosphere on the effect of coherent beam combining

SONG Ji-kun LI Yuan-yang CHE Dong-bo GUO Jin WANG Ting-feng LI Zhi-lai

宋纪坤, 李远洋, 车东博, 郭劲, 王挺峰, 李志来. 湍流大气对光束相干合成效果的影响[J]. 中国光学, 2020, 13(4): 884-898. doi: 10.37188/CO.2019-0197
引用本文: 宋纪坤, 李远洋, 车东博, 郭劲, 王挺峰, 李志来. 湍流大气对光束相干合成效果的影响[J]. 中国光学, 2020, 13(4): 884-898. doi: 10.37188/CO.2019-0197
SONG Ji-kun, LI Yuan-yang, CHE Dong-bo, GUO Jin, WANG Ting-feng, LI Zhi-lai. Influence of turbulent atmosphere on the effect of coherent beam combining[J]. Chinese Optics, 2020, 13(4): 884-898. doi: 10.37188/CO.2019-0197
Citation: SONG Ji-kun, LI Yuan-yang, CHE Dong-bo, GUO Jin, WANG Ting-feng, LI Zhi-lai. Influence of turbulent atmosphere on the effect of coherent beam combining[J]. Chinese Optics, 2020, 13(4): 884-898. doi: 10.37188/CO.2019-0197

湍流大气对光束相干合成效果的影响

doi: 10.37188/CO.2019-0197
详细信息
  • 中图分类号: TN249

Influence of turbulent atmosphere on the effect of coherent beam combining

Funds: Supported by National Key R&D Program of China (No. 2016YFB0500100); National Natural Science Foundation of China (No. 61805234); Fund of the State Key Laboratory of Laser Interaction with Matter (No. SKLLIM1704); Key Research Program of Frontier Sciences, CAS(No. QYZDB-SSW-SLH014); Civil Aerospace Pre-research Project (No. D040101)
More Information
    Author Bio:

    SONG Ji-kun (1992—), male, born in Heze County, Shandong Province. He is a doctoral candidate. In 2015, he obtained his bachelor's degree from Shandong Jianzhu University. He is mainly engaged in the research of beam transmission and control. E-mail: song_jk@126.com

    WANG Ting-feng (1977—), male, born in Wendeng City, Shandong Province. He is a doctor, researcher and doctoral supervisor. He obtained his bachelor's degree from former Jilin University of Technology in 1999, master's degree from Jilin University in 2002, and doctor's degree from Changchun Institute of Optics, Fine Mechanics and Physics, CAS in 2005. He is mainly engaged in the research of laser application and photoelectricity. E-mail: wangtingfeng@ciomp.ac.cn

    Corresponding author: wangtingfeng@ciomp.ac.cn
  • 摘要: 光纤激光相干合成是获得高功率高光束质量输出较为有效的途径,而湍流大气是制约其应用与发展的关键因素之一。本文重点研究了大气格林伍德频率对基于随机并行梯度下降算法(SPGD)相干合成系统校正效果的影响。首先,在静态大气条件下,分析了不同湍流强度对相干合成系统校正效果的影响;然后,利用数值计算生成一组旋转的符合Kolmogorov统计规律的相位屏模拟湍流大气,对在不同大气格林伍德频率下相干合成系统的校正效果进行研究;最后,搭建两路光纤激光相干合成实验平台,进行实验验证。仿真和实验结果表明,在系统的控制算法迭代频率(350 Hz)一定时,随着大气格林伍德频率的增加,湍流大气对光束的相位和光强的扰动加剧,使得相干合成系统的合成效果变得越来越差。
  • 图  1  两路光纤激光相干合成系统结构图。PM:相位调制器;FA:光纤放大器;CO:光纤准直器;BS:分光镜;PD:单点探测器。

    Figure  1.  The experimental scheme of coherent beam combining system of two fiber laser beams. PM: Phase Modulator; FA: Fiber Amplifiers; CO: Collimator; BS: Beam Splitting Mirror; PD: Photodetector

    图  2  系统评价指标PIB随湍流强度的变化曲线

    Figure  2.  System evaluation index PIB varies with iteration turbulence intensity

    图  3  旋转相位屏生成示意图

    Figure  3.  Schematic diagram of a rotating phase screen generation

    图  4  湍流大气下,系统PIB随迭代次数的变化曲线

    Figure  4.  System evaluation index PIB varies with iteration number under turbulent atmosphere

    图  5  评价函数随大气格林伍德频率的变化曲线

    Figure  5.  Evaluation function varying with atmospheric Greenwood frequency

    图  6  探测器输出电压随算法迭代次数的变化曲线

    Figure  6.  Detector′s output voltage varies with iteration number

    图  7  在不同的格林伍德频率下,探测器的输出电压与迭代次数的变化曲线

    Figure  7.  Detector′s output voltage varies with the number of iterations under different Greenwood frequencies

    图  8  系统开环和闭环时探测器输出电压随大气湍流格林伍德频率的变化曲线

    Figure  8.  Detector′s output voltage varies with Greenwood frequency when the system is open and closed

    表  1  System parameters used for simulation

    Table  1.   System parameters used for simulation

    ParameterValue
    Distance: L/m2
    Wavelength: λ/m1 064 × 10−9
    Beam radius: w0/m2.5 × 10−3
    Number of samples: 256
    下载: 导出CSV
  • [1] WANG X L, ZHOU P, SU R T, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 3-28. (in Chinese)
    [2] LIU Z J, ZHOU P, XU X J, et al. Coherent beam combining of high power fiber lasers: progress and prospect[J]. Science China Technological Sciences, 2013, 56(7): 1597-1606. doi: 10.1007/s11431-013-5260-z
    [3] ZENG H M, LI S, ZHANG ZH Y, et al. Risley-prism-based beam scanning system for mobile lidar[J]. Optics and Precision Engineering, 2019, 27(7): 1444-1450. (in Chinese) doi: 10.3788/OPE.20192707.1444
    [4] WANG H Q, SONG L H, CAO M H, et al. Compressed sensing detection of optical spatial modulation signal in turbulent channel[J]. Optics and Precision Engineering, 2018, 26(11): 2669-2674. (in Chinese) doi: 10.3788/OPE.20182611.2669
    [5] CHEN X, WANG J L, LIU CH H. Beam combining of high energy fibre lasers[J]. Infrared and Laser Engineering, 2018, 47(1): 0103011. (in Chinese) doi: 10.3788/IRLA201847.0103011
    [6] WANG X L, ZHOU P, MA Y X, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm[J]. Optics Letters, 2011, 36(16): 3121-3123. doi: 10.1364/OL.36.003121
    [7] GOODNO G D, KOMINE H, MCNAUGHT S J, et al. Coherent combination of high-power, zigzag slab lasers[J]. Optics Letters, 2006, 31(9): 1247-1249. doi: 10.1364/OL.31.001247
    [8] MA Y X, ZHOU P, WANG X L, et al. Coherent beam combination with single frequency dithering technique[J]. Optics Letters, 2010, 35(9): 1308-1310. doi: 10.1364/OL.35.001308
    [9] ZHOU P, MA Y X, WANG X L, et al. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(5): 973-977. (in Chinese) doi: 10.3788/HPLPB20102205.0973
    [10] ZHOU P, LIU Z J, WANG X L, et al. Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm[J]. Optics &Laser Technology, 2009, 41(7): 853-856.
    [11] ZHOU P, MA Y X, WANG X L, et al. Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm[J]. Optics Letters, 2009, 34(19): 2939-2941. doi: 10.1364/OL.34.002939
    [12] VORONTSOV M A, CARHART G W, RICKLIN J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909. doi: 10.1364/OL.22.000907
    [13] VORONTSOV M. Adaptive Photonics Phase-Locked Elements (APPLE): system architecture and wavefront control concept[J]. Proceedings of SPIE, 2005, 5895: 589501. doi: 10.1117/12.617390
    [14] WEYRAUCH T, VORONTSOV M, CARHART G, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457. doi: 10.1364/OL.36.004455
    [15] VORONTSOV M, FILIMONOV G, OVCHINNIKOV V, et al. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence[J]. Applied Optics, 2016, 55(15): 4170-4185. doi: 10.1364/AO.55.004170
    [16] GENG CH, YANG Y, LI F, et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 2018, 45(3): 170692. (in Chinese) doi: 10.12086/oee.2018.170692
    [17] SU R T, MA Y X, XI J CH, et al. 60-channel large array element fiber laser high efficiency coherent synthesis[J]. Infrared and Laser Engineering, 2019, 48(1): 331. (in Chinese)
    [18] ZHI D, MA Y X, MA P F, et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere[J]. Infrared and Laser Engineering, 2019, 48(10): 1005007. (in Chinese) doi: 10.3788/IRLA201948.1005007
    [19] LIU L, GUO J, ZHAO SH, et al. Application of stochastic parallel gradient descent algorithm in laser beam shaping[J]. Chinese Optics, 2014, 7(2): 260-266. (in Chinese)
    [20] LI D, NING Y, WU W M, et al. Numerical simulation and validation method of atmospheric turbulence of phase screen in rotation[J]. Infrared and Laser Engineering, 2017, 46(12): 1211003. (in Chinese) doi: 10.3788/IRLA201746.1211003
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1823
  • HTML全文浏览量:  1079
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2019-11-09
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回