留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属离子Bi3+掺杂Lu1-xO3: x%Ho3+荧光粉的发光性能

赵海琴 王林香 庹娟 叶颖

赵海琴, 王林香, 庹娟, 叶颖. 金属离子Bi3+掺杂Lu1-xO3: x%Ho3+荧光粉的发光性能[J]. 中国光学(中英文), 2021, 14(3): 528-535. doi: 10.37188/CO.2019-0222
引用本文: 赵海琴, 王林香, 庹娟, 叶颖. 金属离子Bi3+掺杂Lu1-xO3: x%Ho3+荧光粉的发光性能[J]. 中国光学(中英文), 2021, 14(3): 528-535. doi: 10.37188/CO.2019-0222
ZHAO Hai-qin, WANG Lin-xiang, TUO Juan, YE Ying. Luminescence properties of Bi3+ doped Lu1-xO3: x%Ho3+ metal ion phosphors[J]. Chinese Optics, 2021, 14(3): 528-535. doi: 10.37188/CO.2019-0222
Citation: ZHAO Hai-qin, WANG Lin-xiang, TUO Juan, YE Ying. Luminescence properties of Bi3+ doped Lu1-xO3: x%Ho3+ metal ion phosphors[J]. Chinese Optics, 2021, 14(3): 528-535. doi: 10.37188/CO.2019-0222

金属离子Bi3+掺杂Lu1-xO3: x%Ho3+荧光粉的发光性能

doi: 10.37188/CO.2019-0222
基金项目: 新疆维吾尔自治区自然科学基金(No. 2017D01A60);新疆维吾尔自治区高校科研计划 (No. XJEDU2018Y032)
详细信息
    作者简介:

    赵海琴(1995—),女,甘肃金昌人,硕士,2020 年于新疆师范大学获得硕士学位,主要从事纳米发光材料的制备及其性能研究。E-mail:zhq0928@mail.ustc.edu.cn

    王林香(1979—),女,甘肃秦安人,博士,副教授,2010 年于中国科学技术大学获得博士学位,主要研究纳米发光材料。E-mail:wanglinxiang23@126.com

  • 中图分类号: O482.31

Luminescence properties of Bi3+ doped Lu1-xO3: x%Ho3+ metal ion phosphors

Funds: Supported by Natural Science Foundation of Xinjiang (No. 2017D01A60); Scientific Research Plan of Colleges and University in Xinjiang (No. XJEDU2018Y032)
More Information
  • 摘要: 采用高温固相法制备了金属离子Bi3+掺杂Lu1-xO3: x%Ho3+系列荧光粉,研究了不同浓度Bi3+掺杂Lu1-xO3: x%Ho3+荧光粉的晶体结构、Lu2O3基质中Bi3+→Ho3+的能量传递规律及合成粉体的发光性质。X射线衍射结果表明Bi3+、Ho3+掺杂对Lu2O3的立方相结构没有影响。在322 nm激发波长下发射出位于551 nm处Ho3+5S25I8跃迁;在551 nm监测下,合成的Ho3+、Bi3+共掺杂Lu2O3荧光粉出现Bi3+的322 nm特征激发峰以及Ho3+的448 nm处的5I85F1跃迁。当Bi3+掺杂浓度为1.5%时,Bi3+对Ho3+的能量传递最有效,比单掺Ho3+样品发射强度提高了34.8倍。Lu98.5%−yO3:1.5%Ho3+, y%Bi3+(y=1,1.5,2)样品,随着Bi3+掺杂浓度增加,用980 nm激发比322 nm激发在551 nm处获得的光强分别提高了 13.3倍、16.8倍、14.2倍。通过计算得到Bi3+和Ho3+之间的能量传递临界距离为2.979 nm,且Bi3+与Ho3+之间的能量传递是通过偶极-四极相互作用实现的。

     

  • 图 1  Ho3+、Bi3+掺杂Lu2O3粉末XRD

    Figure 1.  XRD patterns of Ho3+ and Bi3+ doped Lu2O3 powders

    图 2  Lu98.5%O3:1.5%Bi3+和 Lu98.5%O3:1.5%Ho3+样品的激发和发射光谱

    Figure 2.  Excitation and emission spectra of Lu98.5%O3:1.5%Bi3+ and Lu98.5%O3:1.5%Ho3+phosphor samples

    图 3  Lu98.5%-yO3:1.5%Ho3+y%Bi3+样品的激发光谱(a)和发射光谱(b)

    Figure 3.  Excitation spectra (a) and emission spectrum (b) of Lu98.5%-yO3: 1.5% Ho3+, y%Bi3+ samples

    图 4  Bi3+与Ho3+的能级以及能量传递示意图

    Figure 4.  Schematic diagram of the energy levels and energy transfer of Bi3+ and Ho3+

    图 5  980 nm及322 nm激发下Lu1−xyO3:x%Ho3+, y%Bi3+样品的发射光谱及强度变化

    Figure 5.  Luminescence spectra and intensity changes of Lu1−xyO3:x%Ho3+, y%Bi3+ samples at 980 nm and 322 nm excitation

    图 6  Lu98.5%-yO3:1.5%Ho3+,y%Bi3+荧光粉中Ho3+的荧光衰减曲线

    Figure 6.  Decay curves for the luminescence of Ho3+ in Lu98.5%-yO3:1.5%Ho3+, y%Bi3+phosphors

    图 7  Lu98.5%-yO3:1.5%Ho3+y%Bi3+荧光粉中Ho3+${{{I}}_{{{{\rm{S}}}}_{0}}}/{I_{\rm{S}}}$与(CBi+CHo)6/3,(CBi+CHo)8/3和(CBi+CHo)10/3关系曲线

    Figure 7.  Dependence ${{{I}}_{{{{\rm{S}}}}_{0}}}/{I_{\rm{S}}}$ of Ho3+ on (CBi+CHo) 6/3, (CBi+CHo) 8/3 and (CBi+CHo) 10/3 in Lu98.5%-yO3:1.5%Ho3+, y%Bi3+ phosphor

    表  1  不同摩尔分数的Bi3+掺杂Lu2O3:Ho3+荧光粉

    Table  1.   Bi3+ doped Lu2O3:Ho3+ phosphors at different doping concentrations

    sampleLu2O3Ho3+Bi3+
    198.5%1.5%0%
    298.5%0%1.5%
    397.5%1.5%1.0%
    497.0%1.5%1.5%
    596.5%1.5%2.0%
    下载: 导出CSV
  • [1] 贾玉涛. 稀土离子Ho3+掺杂氧化物上转换光致发光的研究[D]. 苏州: 苏州大学, 2010.

    JIA Y T. Study on up-conversion photo luminescence of rare earth ions Ho3+ doped oxides[D]. Suzhou: Soochow University, 2010. (in Chinese)
    [2] FENG L, WU Y S. Optical transitions of Ho3+ in oxyfluoride glasses and upconversion luminescence of Ho3+/Yb3+ -codoped oxyfluoride glasses[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 142: 232-238. doi: 10.1016/j.saa.2015.01.066
    [3] BHARGAVI K, RAO M S, SUDARSAN V, et al. Influence of Al3+ ions on self up-conversion in Ho3+ doped lead silicate glasses[J]. Optical Materials, 2014, 36(7): 1189-1196. doi: 10.1016/j.optmat.2014.02.027
    [4] SURESH B, ZHYDACHEVSKII Y, BRIK M G, et al. Amplification of green emission of Ho3+ ions in lead silicate glasses by sensitizing with Bi3+ ions[J]. Journal of Alloys and Compounds, 2016, 683: 114-122. doi: 10.1016/j.jallcom.2016.05.056
    [5] 李新跃, 邓建国, 刘东亮. 氧化物掺杂稀土的上转换材料研究进展[J]. 信阳师范学院学报: 自然科学版,2011,24(3):414-420.

    LI X Y, DENG J G, LIU D L. Research progress of upconversion materials of oxide matrix with doped rare earths[J]. Journal of Xinyang Normal University:Natural Science Edition, 2011, 24(3): 414-420. (in Chinese)
    [6] 李佳钰. Bi3+和几种稀土离子掺杂新型发光材料的合成及性质研究[D]. 沈阳: 沈阳师范大学, 2018.

    LI J Y. Study of the synthesis and luminescent properties of Bi3+ and several rare earth ions doped new optical materials[D]. Shenyang: Shenyang Normal University, 2018. (in Chinese).
    [7] 郭如旺, 郭常新. Lu2O3: Bi3+粉末晶体发光性能的研究[J]. 中国稀土学报,2007,25(5):533-539. doi: 10.3321/j.issn:1000-4343.2007.05.003

    GUO R W, GUO CH X. Luminescent properties of nano- and submicron-crystal Lu2O3: Bi3+[J]. Journal of the Chinese Rare Earth Society, 2007, 25(5): 533-539. (in Chinese) doi: 10.3321/j.issn:1000-4343.2007.05.003
    [8] RAO T K V, KAMAL C S, SAMUEL T, et al. Color tunable luminescence from LaAlO3: Bi3+, Ho3+ doped phosphors for field emission displays[J]. Journal of Materials Science:Materials in Electronics, 2017, 29(2): 1011-1017.
    [9] XUE J P, WANG X F, JEONG J H, et al. Spectral and energy transfer in Bi3+–Ren+ (n = 2, 3, 4) co-doped phosphors: extended optical applications[J]. Physical Chemistry Chemical Physics, 2018, 20(17): 11516-11541. doi: 10.1039/C8CP00433A
    [10] ZENG L W, LIU Y, LIN B H, et al. Rational design of Bi3+/Ln3+: GdVO4 (Ln=Eu, Sm, Dy, Ho) nanophosphor: synthesis, characterization and color-tunable property[J]. Optical Materials, 2018, 77: 204-210. doi: 10.1016/j.optmat.2018.01.040
    [11] 赵海琴, 王林香, 庹娟, 等. Li+/Bi3+掺杂Lu2O3: Ho3+荧光粉的制备及其发光特性[J]. 激光与光电子学进展,2018,55(8):081602.

    ZHAO H Q, WANG L X, TUO J, et al. Preparation and luminescent properties of Li+/Bi3+ co-doped Lu2O3: Ho3+ phosphors[J]. Laser &Optoelectronics Progress, 2018, 55(8): 081602. (in Chinese)
    [12] 肖全兰, 孟建新, 谢丽娟, 等. Bi3+掺杂对YVO4: Yb3+近红外发光的敏化作用[J]. 物理化学学报,2011,27(10):2427-2431. doi: 10.3866/PKU.WHXB20110928

    XIAO Q L, MENG J X, XIE L J, et al. Near-infrared luminescence enhancement by co-doped Bi3+ in YVO4: Yb3+[J]. Acta Physico-Chimica Sinica, 2011, 27(10): 2427-2431. (in Chinese) doi: 10.3866/PKU.WHXB20110928
    [13] KHAN W, ZHOU L LIANG, et al. Luminescence enhancement and energy transfers of Ce3+ and Sm3+ in CaSrSiO4 phosphor[J]. Journal of Materials Chemistry C, 2018, 6(28): 7612-7618. doi: 10.1039/C8TC02143K
    [14] TAO ZH X, TSUBOI T, HUANG Y L, et al. Photoluminescence properties of Eu3+-doped glaserite-type orthovanadates CsK2Gd[VO4]2[J]. Inorganic Chemistry, 2014, 53(8): 4161-4168. doi: 10.1021/ic500208h
    [15] XIA ZH G, MIAO SH H, CHEN M Y, et al. Structure, crystallographic sites, and tunable luminescence properties of Eu2+ and Ce3+/Li+-activated Ca1.65Sr0.35SiO4 phosphors[J]. Inorganic Chemistry, 2015, 54(16): 7684-7691. doi: 10.1021/acs.inorgchem.5b00455
    [16] GUO Q, WANG Q, JIANG L, et al. A novel apatite, Lu5(SiO4)3N: (Ce, Tb), phosphor material: synthesis, structure and applications for NUV-LEDs[J]. Physical Chemistry Chemical Physics, 2016, 18(23): 15545-15554. doi: 10.1039/C6CP01512C
    [17] 胡莲莲, 艾尔肯·斯地克, 万英, 等. Dy3+、Tm3+共掺杂Ca2MgSi2O7的发光特性[J]. 发光学报,2018,39(7):948-954. doi: 10.3788/fgxb20183907.0948

    HU L L, AIERKEN S, WAN Y, et al. Luminescent properties of Dy3+, Tm3+ co-doped Ca2MgSi2O7[J]. Chinese Journal of Luminescence, 2018, 39(7): 948-954. (in Chinese) doi: 10.3788/fgxb20183907.0948
    [18] DEXTER D L, SCHULMAN J H. Theory of concentration quenching in inorganic phosphors[J]. Journal of Chemical Physics, 1954, 22(6): 1063-1070. doi: 10.1063/1.1740265
    [19] ZHOU H P, JIN Y, JIANG M S, et al. A single-phased tunable emission phosphor MgY2Si3O10: Eu3+, Bi3+ with efficient energy transfer for white LEDs[J]. Dalton Transactions, 2015, 44(3): 1102-1109. doi: 10.1039/C4DT02114B
    [20] 杨国辉, 陈凯, 王小军, 等. 基质组成变化及电荷补偿对NaM4(VO4)3: Eu3+(M=Mg, Ca)荧光性能的调控[J]. 发光学报,2019,40(6):725-734. doi: 10.3788/fgxb20194006.0725

    YANG G H, CHEN K, WANG X J, et al. Controlling emissions of NaM4(VO4)3: Eu3+(M=Mg, Ca) phosphor by adjusting base composition and charge compensation[J]. Chinese Journal of Luminescence, 2019, 40(6): 725-734. (in Chinese) doi: 10.3788/fgxb20194006.0725
    [21] 糜万鑫, 曹丽丽, 楚司祺, 等. 绿色荧光粉Sr3P4O13: Ce3+, Tb3+的发光特性及Ce3+→Tb3+能量传递机理[J]. 光学学报,2019,39(8):0816002. doi: 10.3788/AOS201939.0816002

    MI W X, CAO L L, CHU S Q, et al. Luminescence properties and energy transfer mechanism of Sr3P4O13: Ce3+, Tb3+ green phosphors[J]. Acta Optica Sinica, 2019, 39(8): 0816002. (in Chinese) doi: 10.3788/AOS201939.0816002
    [22] 于汀, 高明燕, 宋岩, 等. Dy3+, Eu3+共掺的LiGd(MoO4)2单一相荧光粉的合成、发光及能量传递[J]. 无机化学学报,2018,34(5):857-863. doi: 10.11862/CJIC.2018.116

    YU T, GAO M Y, SONG Y, et al. Synthesis, luminescence and energy transfer of Dy3+ and Eu3+ co-doped LiGd(MoO4)2 single-phase phosphors[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(5): 857-863. (in Chinese) doi: 10.11862/CJIC.2018.116
    [23] 苏小娜, 万英, 周芷萱, 等. Na2CaSiO4: Sm3+, Eu3+荧光粉的发光特性和能量传递[J]. 物理学报,2017,66(23):230701. doi: 10.7498/aps.66.230701

    SU X N, WAN Y, ZHOU ZH X, et al. Luminescence properties and energy transfer of Na2CaSiO4: Sm3+, Eu3+ phosphor[J]. Acta Physica Sinica, 2017, 66(23): 230701. (in Chinese) doi: 10.7498/aps.66.230701
    [24] BLASSE G. Energy transfer in oxidic phosphors[J]. Physics Letters A, 1968, 28(6): 444-445. doi: 10.1016/0375-9601(68)90486-6
    [25] XIE A, YUAN X M, SHI Y, et al. Photoluminescence characteristics of energy transfer between Eu3+ and Bi3+ in LiEu1−xBix (WO4)0.5(MoO4)1.5[J]. Journal of the American Ceramic Society, 2009, 92(10): 2254-2258. doi: 10.1111/j.1551-2916.2009.03195.x
    [26] 陈彩花, 杨国辉, 梁利芳, 等. 溶胶凝胶法合成CaYAlO4: Mn4+红色荧光粉及其荧光性能研究[J]. 发光学报,2017,38(5):567-573. doi: 10.3788/fgxb20173805.0567

    CHEN C H, YANG G H, LIANG L F, et al. Luminescent properties of CaYAlO4: Mn4+ red phosphors prepared by sol-gel method[J]. Chinese Journal of Luminescence, 2017, 38(5): 567-573. (in Chinese) doi: 10.3788/fgxb20173805.0567
    [27] ZHANG Y, GONG W T, YU J J, et al. Multi-color luminescence properties and energy transfer behaviour in host-sensitized CaWO4: Tb3+, Eu3+ phosphors[J]. RSC Advances, 2016, 6(37): 30886-30894. doi: 10.1039/C6RA01862A
    [28] REISFELD R, LIEBLICH-SOFFER N. Energy transfer from UO22+ to Sm3+ in phosphate glass[J]. Journal of Solid State Chemistry, 1979, 28(3): 391-395. doi: 10.1016/0022-4596(79)90090-2
    [29] HUANG C H, CHEN T M. A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4: Ce3+, Mn2+, Tb3+ phosphor for UV-light emitting diodes[J]. The Journal of Physical Chemistry C, 2011, 115(5): 2349-2355. doi: 10.1021/jp107856d
    [30] JHA K, JAYASIMHADRI M. Effective sensitization of Eu3+ and energy transfer in Sm3+/Eu3+ co-doped ZPBT glasses for CuPc based solar cell and w-LED applications[J]. Journal of Luminescence, 2018, 194: 102-107. doi: 10.1016/j.jlumin.2017.09.049
    [31] PAULOSE P I, JOSE G, THOMAS V, et al. Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass[J]. Journal of Physics and Chemistry of Solids, 2003, 64(5): 841-846. doi: 10.1016/S0022-3697(02)00416-X
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1149
  • HTML全文浏览量:  381
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-26
  • 修回日期:  2020-01-21
  • 网络出版日期:  2021-04-17
  • 刊出日期:  2021-05-14

目录

    /

    返回文章
    返回