留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K-B镜面形高精度检测技术研究进展

张帅 侯溪

张帅, 侯溪. K-B镜面形高精度检测技术研究进展[J]. 中国光学, 2020, 13(4): 660-675. doi: 10.37188/CO.2019-0231
引用本文: 张帅, 侯溪. K-B镜面形高精度检测技术研究进展[J]. 中国光学, 2020, 13(4): 660-675. doi: 10.37188/CO.2019-0231
ZHANG Shuai, HOU Xi. Research progress of high-precision surface metrology of a K-B mirror[J]. Chinese Optics, 2020, 13(4): 660-675. doi: 10.37188/CO.2019-0231
Citation: ZHANG Shuai, HOU Xi. Research progress of high-precision surface metrology of a K-B mirror[J]. Chinese Optics, 2020, 13(4): 660-675. doi: 10.37188/CO.2019-0231

K-B镜面形高精度检测技术研究进展

doi: 10.37188/CO.2019-0231
基金项目: 国家自然科学基金面上资助项目(No. 61675209)
详细信息
    作者简介:

    张 帅(1994—),男,河南平顶山人,硕士研究生,2018年于长春理工大学获得学士学位,主要从事高精度X射线光学元件面形检测装置研究。Email:zhangshuai18@mails.uacs.ac.cn

    侯 溪(1980—),男,四川阆中人,博士,研究员,博士生导师,2002年于电子科技大学获得学士学位,2007年于中国科学院研究生院获得博士学位,主要从事高精度光学检测技术研究及仪器研制。Email:hxxh6776@163.com

  • 中图分类号: TN247

Research progress of high-precision surface metrology of a K-B mirror

Funds: Supported by General Program of National Natural Science Foundation of China (No. 61675209)
More Information
  • 摘要: 以新一代同步辐射光源和全相干X射线自由电子激光为代表的先进光源已成为众多学科领域中一种不可或缺的研究工具。先进光源技术不断进步,驱动超精密光学制造快速发展,先进光源中关键聚焦光学元件K-B镜的面形精度是影响光源性能的重要指标,要求其在几十纳弧度以下。然而,高精度K-B镜面形检测技术依然存在较大技术挑战,一直是国内外研究热点。本文介绍了反射式轮廓测量技术即长程轮廓仪(LTP)、纳米测量仪(NOM)以及拼接干涉检测技术等典型K-B镜面形检测技术的基本原理,对比分析了其技术特点,综述了国内外K-B镜面形检测技术的研究现状和最新进展,对发展趋势进行了展望。
  • 图  1  (a)经典一维K-B镜和(b)具有二维弯曲的K-B镜

    Figure  1.  (a) Typical K-B mirror and (b) K-B mirror with two-dimensional bending

    图  2  LTP光学系统原理图

    Figure  2.  Principle diagram of LTP optical system

    图  3  NOM原理图[16]

    Figure  3.  Principle diagram of NOM system[16]

    图  4  拼接原理图

    Figure  4.  The principle of stitching

    图  5  曲率变化剧烈的柱面镜的干涉条纹图

    Figure  5.  Interference fringe pattern of cylindrical mirror with sharp curvature change

    图  6  LTP/NOM发展历程[16, 21, 23, 25, 27, 28]

    Figure  6.  The development of LTP/NOM[16, 21, 23, 25, 27, 28]

    图  7  (a) ESRF中的拼接干涉仪及其(b)测量过程[40]

    Figure  7.  (a) Fizeau stitching interferometer at ESRF and its (b) measurement process[40]

    图  8  SPring-8中的MSI原理图[43]

    Figure  8.  Diagram of microstitching interferometry at SPring-8[43]

    图  9  ESRF中的MSI装置[46]

    Figure  9.  Microstitching interferometry at ESRF[46]

    图  10  SOLEIL中Michelson型显微拼接干涉仪[47]

    Figure  10.  Michelson stitching interferometry at SOLEIL[47]

    图  11  (a) RADSI装置图及其 (b) 测量过程[48]

    Figure  11.  (a) Scheme of RADSI system and (b) its measurement process[48]

    图  12  RADSI发展路线图[42, 48, 50, 52]

    Figure  12.  The development of RADSI[42, 48, 50, 52]

    图  13  2D-TSI装置原理图[57]

    Figure  13.  The scheme of 2D-TSI device[57]

    图  14  先进光源硬X射线聚焦尺寸演变

    Figure  14.  The trend of hard X-ray focusing size

    图  15  K-B镜面形精度趋势[36]

    Figure  15.  The trend of K-B mirror shape accuracy [36]

    图  16  K-B镜面形检测技术发展过程图

    Figure  16.  Development of K-B mirror surface metrology

    表  1  LTP/NOM技术典型参数

    Table  1.   Specifications of LTP/NOM

    类型LTPNOM
    工作距离/mm100~1100300~1300
    斜率/mrad±5±5
    扫描速率/(mm·s−1)5~102~4
    精度(RMS)/nrad平面: ~50
    曲面: ~250
    平面: ~50
    曲面: ~500
    空间分辨率/mm~12.5~5
    下载: 导出CSV

    表  2  国内外典型LTP/NOM技术参数

    Table  2.   Technical specifications of typical LTP/NOM technologies at home and abroad

    类型机构/装置设备时间测量范围性能备注
    LTP日本JASRI/SPring-8Laser-LTP20143.6 mrad0.2 μrad
    重复精度60 nrad
    激光校准测头误差
    分辨率30 nrad
    LTP2016~1 m5 nm新型斜率传感器;
    空间分辨率<1 mm
    美国LBNLALSLTP-II+20141 m
    ±2.5 mrad
    平面:<80 rad rms
    曲面(>15 m): 250 nrad rms
    校正K-B位置误差
    中国台湾NSRRCNLTP20131.2 m测量重复精度50 nrad定位基准为衍射暗线;
    光束定位精度高
    中国SSRF上海光源LTP20161 m平面:<50 nrad
    曲面(>38 m): 0.27μrad
    支持快速测量
    中国IHEP高能所FSP20191 m平面:25 nrad rms
    曲面(3 mrad): 32 nrad rms
    空间分辨率优于1 mm
    NOM巴西LNLSNOM20171.5 m平面:50 nrad rms横向分辨率大
    德国BESSY-IIDiamond-NOM20141.5 m
    ±5 mrad
    平面:50 nrad rms
    曲面:200 nrad rms (±24μrad)
    500 nrad rms (±5 mrad)
    曲率测量范围大
    美国BNLDLTP20141 m
    ±4.6 mrad
    平面:60 nrad rms
    曲面(>15 m): 200 nrad rms
    曲面测量受限
    OSMS20171.2 m平面:<50 nrad rms
    曲面(>60 m): 100 nrad rms
    实现二维测量
    日本JASRI/SPring-8AC-NOM20149.7 mrad±1.2μrad ±0.24μrad (48μrad)
    重复精度100 nrad rms
    校准扫描俯仰误差; 扫描速度慢分辨率24.2 nrad
    中国SSRF上海光源NOM20151100 mm
    ±5 mrad
    0.08μrad rms (±50μrad)
    0.25μrad rms (±5 mrad)
    空间采样频率在1~10 mm
    重复精度50 nrad rms
    下载: 导出CSV

    表  3  3种类型拼接干涉仪对比[40, 51, 56]

    Table  3.   Comparison of three types of stitching interferometer [40, 51, 56]

    主动角控制拼接干涉仪
    控制算法+精密转台
    测角拼接干涉仪
    测角系统(RADSI)
    测角辅助拼接干涉仪
    测角辅助装置+拼接算法
    大口径、小曲率长焦K-B镜
    300~1000 mm; <20 mrad
    小口径、大曲率短焦K-B镜
    100~300 mm; >20 mrad
    平面镜、小曲率椭圆柱镜(探索阶段)
    平面优于0.30 nm rms
    曲面优于0.30 μrad rms
    步进单孔径测量(干涉仪尺寸)
    平面优于0.2 nm rms
    曲面优于2 nm rms
    步进单孔径测量: 2 mm×2 mm
    重复精度1.5 nm rms
    步进单孔径量: 2 mm×2 mm
    结构相对简单,测量口径范围大,
    测量效率高 测量频段有限,
    测量精度受待测面曲率影响大
    测量频段宽,测量精度高,
    曲率测量范围大,结构复杂,
    易受环境影响,测量口径范围受限
    结构简单,动态范围大,测量精度高
    有待进一步完善具体结构
    下载: 导出CSV

    表  4  国内外典型拼接干涉仪技术参数

    Table  4.   Technical parameters of typical stitching interferometer at home and abroad

    机构/装置设备时间技术性能备注
    欧洲ERSFFizeau-SI2019平面镜:优于0.30 nm rms
    椭面镜:优于0.30 μrad rms
    球面镜:优于0.25 μrad rms
    主镜法校正参考误差需弥补球面低频信息空间分辨率: 80 μm
    MSI2019平面: 0.2 nm rms
    横向分辨率: (2.5倍) 16 μm; (1倍) 40 μm
    适合于平面或强弯短镜;
    存在拼接伪影
    美国BNLMSI2017残余斜率偏差: 2 μrad rms采用曲率拼接技术
    ASI-AMS2018平面:重复精度0.5 nm rms
    椭球面:重复精度2 nm rms
    可以减小回程误差; 子孔径重叠
    面积小,测量速度快
    日本大阪大学MSI-RADSI2016面型高度误差:3 nm rms
    重复精度:0.51 nm rms
    可测极端曲率面形以及椭面镜;
    测量范围有限
    法国SOLEILMich-SI2019重复精度:0.2 nm rms可测20 mm−1频段面形信息
    复旦大学RADSI2017平面镜:重复精度0.5 nm rms
    球面镜:曲率偏差为2.3%
    验证了RADSI球面测量能力
    国防科技大学DST2018测量PV值8 nm;
    重复精度达到1.5 nm rms
    一维测量;双扫描间隔; 减小回程
    误差及参考误差
    下载: 导出CSV
  • [1] KIRKPATRICK P, BAEZ A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9): 766-774. doi: 10.1364/JOSA.38.000766
    [2] GIEWEKEMEYER K, WILKE R N, OSTERHOFF M, et al. Versatility of a hard X-ray kirkpatrick–baez focus characterized by ptychography[J]. Journal of Synchrotron Radiation, 2013, 20(3): 490-497. doi: 10.1107/S0909049513005372
    [3] NAULLEAU P P, GOLDBERG K A, BATSON P J, et al. Tolerancing of diffraction-limited Kirkpatrick-Baez synchrotron beamline optics for extreme-ultraviolet metrology[J]. Applied Optics, 2001, 40(22): 3703-3709. doi: 10.1364/AO.40.003703
    [4] MATSUYAMA S, YAMADA J, KOHMURA Y, et al. Full-field X-ray fluorescence microscope based on total-reflection advanced Kirkpatrick-Baez mirror optics[J]. Optics Express, 2019, 27(13): 18318-18328. doi: 10.1364/OE.27.018318
    [5] KODAMA R, IKEDA N, KATO Y, et al. Development of an advanced Kirkpatrick-Baez microscope[J]. Optics Letters, 1996, 21(17): 1321-1323. doi: 10.1364/OL.21.001321
    [6] HUDEC R, PINA L, VAN INNEMAN A, et al. Lightweight x-ray optics for future space missions[J]. Proceedings of SPIE, 2003, 4851: 656-665. doi: 10.1117/12.461590
    [7] YUMOTO H, MIMURA H, KOYAMA T, et al. Focusing of X-ray free-electron laser pulses with reflective optics[J]. Nature Photonics, 2012, 7(1): 43-47.
    [8] SIEWERT F, BUCHHEIM J, BOUTET S, et al. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry[J]. Optics Express, 2012, 20(4): 4525-4536. doi: 10.1364/OE.20.004525
    [9] HEYNACHER E, REINHARDT D. Measuring equipment for testing the directrix of high-resolution wolter-type telescopes[J]. Proceedings of SPIE, 1979, 184: 167-169. doi: 10.1117/12.957446
    [10] COCCO D, IDIR M, MORTON D, et al. Advances in X-ray optics: from metrology characterization to wavefront sensing-based optimization of active optics[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2018, 907: 105-115.
    [11] QIAN S, TAKACS P. Nano-accuracy Surface Figure Metrology of Precision Optics[M]. COCCO L. Modern Metrology Concerns. Rijeka: Intech Open, 2012.
    [12] OWADA S, TOGAWA K, INAGAKI T, et al. A soft X-ray free-electron laser beamline at SACLA: the light source, photon beamline and experimental station[J]. Journal of Synchrotron Radiation, 2018, 25(1): 282-288. doi: 10.1107/S1600577517015685
    [13] YANDAYAN T, GECKELER R D, SIEWERT F. Pushing the limits: latest developments in angle metrology for the inspection of ultra-precise synchrotron optics[J]. Proceedings of SPIE, 2014, 9206: 92060F.
    [14] TAKACS P Z, FENG S C K, CHURCH E L, et al. Long trace profile measurements on cylindrical aspheres[J]. Proceedings of SPIE, 1989, 966: 354-364. doi: 10.1117/12.948082
    [15] TAKACS P Z, QIAN SH N, COLBERT J. Design of a long trace surface profiler[J]. Proceedings of SPIE, 1987, 749: 59-64. doi: 10.1117/12.939842
    [16] SIEWERT F, LAMMERT H, NOLL T, et al. Advanced metrology: an essential support for the surface finishing of high performance x-ray optics[J]. Proceedings of SPIE, 2005, 5921: 592101. doi: 10.1117/12.622747
    [17] SIEWERT F, ZESCHKE T, ARNOLD T, et al. Linear chirped slope profile for spatial calibration in slope measuring deflectometry[J]. Review of Scientific Instruments, 2016, 87(5): 051907. doi: 10.1063/1.4950737
    [18] OTSUBO M, OKADA K, TSUJIUCHI J. Measurement of large plane surface shapes by connecting small-aperture interferograms[J]. Optical Engineering, 1994, 33(2): 608-613. doi: 10.1117/12.152248
    [19] IRICK S C, MCKINNEY W R, LUNT D L J, et al. Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler[J]. Review of Scientific Instruments, 1992, 63(1): 1436-1438. doi: 10.1063/1.1143036
    [20] QIAN SH N, LI H ZH, TAKACS P Z. Penta-Prism Long Trace Profiler (PPLTP) for measurement of grazing incidence space optics[J]. Proceedings of SPIE, 1996, 2805: 108-114. doi: 10.1117/12.245083
    [21] QIAN SH N, SOSTERO G, TAKACS P Z. Precision calibration and systematic error reduction in the long trace profiler[J]. Optical Engineering, 2000, 39(1): 304-310. doi: 10.1117/1.602364
    [22] PEDREIRA P, NICOLAS J, ŠICS I, et al. Deflectometry encoding the measured angle in a time-dependent intensity signal[J]. Review of Scientific Instruments, 2019, 90(2): 021707. doi: 10.1063/1.5057768
    [23] QIAN SH N, TAKACS P Z. Design of multiple-function long trace profiler[J]. Optical Engineering, 2007, 46(4): 043602. doi: 10.1117/1.2724851
    [24] FLORIOT J, LEVECQ X, BUCOURT S, et al. A Shack–Hartmann measuring head for the two-dimensional characterization of X-ray mirrors[J]. Journal of Synchrotron Radiation, 2008, 15(2): 134-139. doi: 10.1107/S0909049507066083
    [25] IDIR M, KAZNATCHEEV K, DOVILLAIRE G, et al. A 2 D high accuracy slope measuring system based on a stitching shack hartmann optical head[J]. Optics Express, 2014, 22(3): 2770-2781. doi: 10.1364/OE.22.002770
    [26] ALCOCK S G, SAWHNEY K J S, SCOTT S, et al. The Diamond-NOM: a non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 616(2-3): 224-228. doi: 10.1016/j.nima.2009.10.137
    [27] QIAN SH N, IDIR M. Innovative nano-accuracy surface profiler for sub-50 nrad rms mirror test[J]. Proceedings of SPIE, 2016, 9687: 96870D.
    [28] GECKELER R D. ESAD shearing deflectometry: potentials for synchrotron beamline metrology[J]. Proceedings of SPIE, 2006, 6317: 63171H. doi: 10.1117/12.716301
    [29] LACEY I, ADAM J, CENTERS G P, et al. Development of a high performance surface slope measuring system for two-dimensional mapping of x-ray optics[J]. Proceedings of SPIE, 2017, 10385: 103850G.
    [30] QIAN SH N, WANG Q P, HONG Y L, et al. Multiple Functions Long Trace Profiler (LTP-MF) for national synchrotron radiation laboratory of China[J]. Proceedings of SPIE, 2005, 5921: 592104. doi: 10.1117/12.618800
    [31] ZENG D H, XIAO T Q, DU G H, et al. New long trace profiler based on phase plate diffraction for optical metrology of SSRF[J]. Review of Scientific Instruments, 2006, 77(9): 093305. doi: 10.1063/1.2186253
    [32] 李直, 赵洋, 李达成, 等. 衍射型长程大型非球面轮廓测量仪[J]. 光学学报,2002,22(10):1224-1228. doi: 10.3321/j.issn:0253-2239.2002.10.014

    LI ZH, ZHANG Y, LI D CH, et al. A diffractive long trace profiler for large aspherical optics[J]. Acta Optica Sinica, 2002, 22(10): 1224-1228. (in Chinese) doi: 10.3321/j.issn:0253-2239.2002.10.014
    [33] SHUN L, YAN G, WEI ZH, et al. Design of co-path scanning long trace profiler for measurement of x-ray space optical elements[J]. Proceedings of SPIE, 2010, 7544: 754421. doi: 10.1117/12.885415
    [34] 澎湃新闻. 高能同步辐射光源验证装置通过国家验收, 最亮光源年中开建[OL]. https://www.thepaper.cn/newsDetail_forward_2935727. 2019-1-31.

    The Paper. The verification device of high energy synchrotron radiation light source has passed acceptance, and the brightest light source will be built in the middle of the year [OL]. https://www.thepaper.cn/newsDetail_forward_2935727. 2019-1-31.
    [35] 秦超.同步辐射椭圆柱面压弯镜机构的研究[D]. 北京: 中国科学院大学(中国科学院上海应用物理研究所), 2018.

    QIN CH. Research on synchrotron radiation elliptic cylinder mirror bender[D]. Beijing: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2018. (in Chinese)
    [36] SIEWERT F, BUCHHEIM J, ZESCHKE T, et al. On the characterization of ultra-precise X-ray optical components: advances and challenges in ex situ metrology[J]. Journal of Synchrotron Radiation, 2014, 21(5): 968-975. doi: 10.1107/S1600577514016221
    [37] ASSOUFID L, BRAY M, QIAN J, et al. 3D surface profile measurements of large x-ray synchrotron radiation mirrors using stitching interferometry[J]. Proceedings of SPIE, 2002: 4728.
    [38] VIVO A, LANTELME B, BAKER R, et al. Stitching methods at the European Synchrotron Radiation Facility (ESRF)[J]. Review of Scientific Instruments, 2016, 87(5): 051908. doi: 10.1063/1.4950745
    [39] VIVO A, BARRETT R. Fizeau stitching at the European Synchrotron Radiation Facility (ESRF)[J]. Proceedings of SPIE, 2017, 10385: 103850N.
    [40] VIVO A, BARRETT R, PERRIN F. Stitching techniques for measuring X-ray synchrotron mirror topography[J]. Review of Scientific Instruments, 2019, 90(2): 021710. doi: 10.1063/1.5063339
    [41] WIEGMANN A, STAVRIDIS M, WALZEL M, et al. Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments[J]. Precision Engineering, 2011, 35(2): 183-190. doi: 10.1016/j.precisioneng.2010.08.007
    [42] YAMAUCHI K, YAMAMURA K, MIMURA H, et al. Microstitching interferometry for x-ray reflective optics[J]. Review of Scientific Instruments, 2003, 74(5): 2894-2898. doi: 10.1063/1.1569405
    [43] OHASHI H, TSUMURA T, OKADA H, et al. Microstitching interferometer and relative angle determinable stitching interferometer for half-meter-long x-ray mirror[J]. Proceedings of SPIE, 2007, 6704: 670405. doi: 10.1117/12.733476
    [44] GEVORKYAN G S, CENTERS G, POLONSKA K S, et al.. Surface slope metrology of highly curved x-ray optics with an interferometric microscope[C]. Proceedings of SPIE, 2017, 10385: 103850H.
    [45] ASSOUFID L, QIAN J, KEWISH C M, et al. A microstitching interferometer for evaluating the surface profile of precisely figured X-ray K-B mirrors[J]. Proceedings of SPIE, 2007, 6704: 670406. doi: 10.1117/12.736384
    [46] ROMMEVEAUX A, BARRETT R. Micro-stitching interferometry at the ESRF[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 616(2-3): 183-187.
    [47] POLACK F, THOMASSET M, BROCHET S, et al. Surface shape determination with a stitching Michelson interferometer and accuracy evaluation[J]. Review of Scientific Instruments, 2019, 90(2): 021708. doi: 10.1063/1.5061930
    [48] MIMURA H, YUMOTO H, MATSUYAMA S, et al.. Microstitching interferometry for nanofocusing mirror optics[C]. Proceedings of SPIE, 2004, 5533: 170-180.
    [49] KIMURA T, OHASHI H, MIMURA H, et al. A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 616(2-3): 229-232. doi: 10.1016/j.nima.2009.11.014
    [50] YUMOTO H, MIMURA H, KIMURA T, et al. Stitching interferometric metrology for steeply curved x-ray mirrors[J]. Surface and Interface Analysis, 2008, 40(6-7): 1023-1027. doi: 10.1002/sia.2807
    [51] YUMOTO H, MIMURA H, HANDA S, et al. Stitching-angle measurable microscopic-interferometer: surface-figure metrology tool for hard X-ray nanofocusing mirrors with large curvature[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 616(2-3): 203-206.
    [52] YUMOTO H, KOYAMA T, MATSUYAMA S, et al. Stitching interferometry for ellipsoidal x-ray mirrors[J]. Review of Scientific Instruments, 2016, 87(5): 051905. doi: 10.1063/1.4950714
    [53] EHRET G, LAUBACH S, SCHULZ M. Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters[J]. Proceedings of SPIE, 2017, 10326: 1032604.
    [54] MING L, SHANZHI T, FUGUI Y, et al.. Optical metrology at BSRF[C]. Advanced Optical Manufacturing and Testing Technologies, 2016.
    [55] XUE J P, HUANG L, GAO B, et al. One-dimensional stitching interferometry assisted by a triple-beam interferometer[J]. Optics Express, 2017, 25(8): 9393-9405. doi: 10.1364/OE.25.009393
    [56] HUANG L, XUE J P, GAO B, et al. One-dimensional angular-measurement-based stitching interferometry[J]. Optics Express, 2018, 26(8): 9882-9892. doi: 10.1364/OE.26.009882
    [57] HUANG L, IDIR M, ZUO CH, et al. Two-dimensional stitching interferometry based on tilt measurement[J]. Optics Express, 2018, 26(18): 23278-23286. doi: 10.1364/OE.26.023278
    [58] 陈善勇. 非球面子孔径拼接干涉测量的几何方法研究[D]. 长沙: 国防科学技术大学, 2006.

    CHEN SH Y. Geometrical approach to subaperture stitching interferometry for aspheric surface[D]. Changsha: National University of Defense Technology, 2006. (in Chinese)
    [59] 侯溪, 伍凡, 杨力, 等. 环形子孔径拼接检测大口径非球面镜的规划模型及分析[J]. 光学 精密工程,2006,14(2):207-212.

    HOU X, WU F, YANG L, et al. Layout model and analysis of annular subaperture stitching technique for testing large aspheric mirror[J]. Optics and Precision Engineering, 2006, 14(2): 207-212. (in Chinese)
    [60] 王孝坤, 王丽辉, 邓伟杰, 等. 用非零位补偿法检测大口径非球面反射镜[J]. 光学 精密工程,2011,19(3):520-528. doi: 10.3788/OPE.20111903.0520

    WANG X K, WANG L H, DENG W J, et al. Measurement of large aspheric mirrors by non-null testing[J]. Optics and Precision Engineering, 2011, 19(3): 520-528. (in Chinese) doi: 10.3788/OPE.20111903.0520
    [61] 李长春, 程国民, 曹永刚. 自动调焦系统速度评估与仿真[J]. 液晶与显示,2019,34(5):515-520. doi: 10.3788/YJYXS20193405.0515

    LI CH CH, CHENG G M, CAO Y G. Evaluation and simulation of auto-focus system speed[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(5): 515-520. (in Chinese) doi: 10.3788/YJYXS20193405.0515
    [62] ZHAI D D, CHEN SH Y, PENG X Q, et al. Absolute profile test by multi-sensor scanning system with relative angle measurement[J]. Measurement Science and Technology, 2018, 29(11): 115205. doi: 10.1088/1361-6501/aade0d
    [63] SHI Y N, XU X D, HUANG Q SH, et al. Development of relative angle determinable stitching interferometry for high-accuracy x-ray focusing mirrors[J]. Proceedings of SPIE, 2017, 10385: 103850M.
    [64] FREISCHLAD K R. Absolute Interferometric testing based on reconstruction of rotational shear[J]. Applied Optics, 2001, 40(10): 1637-1648. doi: 10.1364/AO.40.001637
    [65] 张敏, 隋永新, 杨怀江. 用于子孔径拼接干涉系统的机械误差补偿算法[J]. 光学 精密工程,2015,23(4):934-940. doi: 10.3788/OPE.20152304.0934

    ZHANG M, SUI Y X, YANG H J. Mechanical error compensation algorithm for subaperture stitching interferometr[J]. Optics and Precision Engineering, 2015, 23(4): 934-940. (in Chinese) doi: 10.3788/OPE.20152304.0934
    [66] MURPHY P, FORBES G, FLEIG J, et al. Stitching interferometry: a flexible solution for surface metrology[J]. Optics and Photonics News, 2003, 14(5): 38-43. doi: 10.1364/OPN.14.5.000038
    [67] NICOLAS J, NG M L, PEDREIRA P, et al. Completeness condition for unambiguous profile reconstruction by sub-aperture stitching[J]. Optics Express, 2018, 26(21): 27212-27220. doi: 10.1364/OE.26.027212
    [68] ASSOUFID L, BRAY M, SHU D M. Development of a linear stitching interferometric system for evaluation of very large X-ray synchrotron radiation substrates and mirrors[J]. AIP Conference Proceedings, 2004, 705(1): 851-854.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  1251
  • HTML全文浏览量:  436
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 修回日期:  2020-01-13
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回