-
摘要: 超快激光技术是目前激光乃至物理学和信息科学领域最活跃的研究前沿之一,在工业加工、生物医学和激光雷达等领域具有广泛应用。二维材料具有独特的物理结构及优异的光电特性,作为可饱和吸收体应用于超快激光器时,具备工作波段宽、调制深度可控和恢复时间快等优势。其中,过渡金属硫化物因具有带隙连续可调等特点,已成为二维材料研究领域的重点。本文从过渡金属硫化物的特性出发,介绍了可饱和吸收器件的制作方法,综述了基于新型过渡金属硫化物的超快激光器的研究进展,并对其发展趋势进行了展望。Abstract: Ultrafast laser technology is one of the most active research frontiers in lasers, physics and information science. It is widely applied in industrial processing, biomedicine, lidar and other fields. Because of their unique physical structure and excellent photoelectric properties, two-dimensional materials have a wide operating band, controllable modulation depth and short recovery time when they are employed as saturable absorbers in ultrafast lasers. Among them, transition metal dichalcogenides have become a focus of research because their band-gap is continuously adjustable. In this paper, we introduce the characteristics of transition metal dichalcogenides and the fabrication methods of saturable absorber devices. The research progress of ultrafast lasers based on emerging transition metal dichalcogenides is reviewed, and the development trend is highlighted.
-
1. 引 言
超快激光器能够输出超短脉冲激光,脉冲持续时间为皮秒或飞秒量级,具有在较低能量条件下获得极高峰值功率的特点,广泛应用于工业加工、光通信、生物医学、激光雷达及非线性光学等领域[1-8]。自20世纪60年代以来,超快激光技术一直是国际激光领域的研究热点之一[9]。超快激光器的实现方式主要有主动调制与被动调制,具体包括调Q技术与锁模技术。相较于主动调制方式,被动调制方式具备结构紧凑、成本低、调制范围大等优势,已成为产生超快激光的主要技术途径。为实现激光的被动调Q与锁模,需要的器件包括光开关、可饱和吸收体、非线性偏振旋转镜以及非线性放大环形镜[10-17]等。其中,可饱和吸收体利用材料的可饱和吸收特性实现对连续激光的调制,学者们于上世纪90年代发明的半导体可饱和吸收镜因具有工作稳定、插入损耗小等特点,作为可饱和吸收体在超快激光器中得到了广泛使用[18-20]。然而,半导体可饱和吸收镜制备工艺复杂、价格昂贵、可调制波段窄且调制深度等不易控制,难以满足现阶段激光器宽波段调制的要求。
二维材料是新兴的光学材料,其具有独特的单层或少层原子结构、极强的量子约束、优异的光电特性并且能够产生新奇的物理现象[21-22]。近年来,发展迅速的二维材料主要包括石墨烯、拓扑绝缘体、黑磷和过渡金属硫化物(Transition Metal Dichalcogenides, TMDs)等[23-27]。其中,由于TMDs具有带隙连续可调等优势[22],可弥补石墨烯等材料在应用中的先天不足,已成为二维材料研究领域中的重点研究对象。作为可饱和吸收体应用于超快激光器时,TMDs具备工作波段宽、调制深度可控、恢复时间快以及非线性折射率高等优点,是理想的脉冲调制器件。
早期应用于超快激光器的TMDs以MoS2、WS2、MoSe2和WSe2 4种材料为主[28-29]。随着材料制备工艺的提升及研究的深入,研究人员发现利用掺杂和构筑异质结构的方法可以有效改善TMDs的属性及能带结构,进而拓展器件的应用范围,因此,越来越多的新型TMDs受到了广泛重视。本文对新型TMDs及其在超快激光器中的应用进行总结。首先,简要介绍了TMDs的基本特性及TMDs可饱和吸收器件的制作方法;其次,重点总结和分析了基于新型TMDs的超快激光器;最后,展望了新型TMDs在超快激光器中应用的发展趋势。
2. 过渡金属硫化物
二维过渡金属硫化物材料是一种MX2型仅有原子厚度的半导体层状材料,一般具有X-M-X三明治结构,M代表过渡金属元素(Mo、W、Pt、Ti、Re、Te等),X代表硫族元素(S、Se或Te),M-X之间以较强的范德瓦尔斯力结合,X-X之间以较弱的范德瓦尔斯力结合,因此,通过机械剥离法或液相剥离法可以直接获得单层或少层TMDs[30-31]。通常情况下,少层TMDs为间接带隙结构,带隙宽度约为1~2 eV[22],单层TMDs为直接带隙结构,具有独特的光电特性,发光效率高,部分新型TMDs的带隙结构不随材料层数的变化而变化,均为直接带隙结构。
单层或少层TMDs的制备方法与其他二维材料的制备方法相同,包括微观机械剥离法[32-33]、化学气相沉积法[34-35]、热分解法[36-38]、液相剥离法、锂离子插层法和脉冲激光沉积法[39]。以上制备方法大体上可以划分为剥离法和生长法两大类:剥离法是通过机械、化学或分散液等手段从块状材料中分离出单层或少层TMDs;生长法是通过在特定基底上控制相关化学反应,从而直接获得单层或少层TMDs。其中,液相剥离法和化学沉积法有利于大批量制备高质量的TMDs薄膜,是目前最常用的制备方法。图1为化学沉积法制备的TMDs图像[40]。
图 1 典型TMD图像。(a)光学图像;(b)扫描电镜图像;(c)原子力显微镜图像;(d、e)低倍、高倍透射电镜图像[40]Figure 1. Typical images of TMD. (a) Optical image. (b) SEM image. (c) AFM image. (d, e) Low- and high-magnification TEM images对TMDs薄膜的线性特性表征方式包括能量色散谱表征、电子能谱表征、拉曼光谱表征以及光致发光谱表征等。其中,拉曼光谱表征具备快捷、方便、灵敏度高且不会对材料造成损伤等优势[41-43],且拉曼光谱表征能够直观表述TMDs等材料的层数及分子结构[44-49],这些优势为其应用于光电器件及超快激光器等领域提供了有力支撑。
3. 可饱和吸收器件制作
为了将制备好的TMDs应用于激光器中以实现超快激光输出,需要根据材料制备方法及激光器结构选择合适的技术途径将其制作成可饱和吸收器件。本节分别对应用于固体激光器和光纤激光器的可饱和吸收器件制作方法进行了总结。
3.1 固体激光器可饱和吸收器件
固体激光器的结构相对简单,可直接将可饱和吸收器件插入固体激光器的谐振腔内,通过空间耦合进行激光脉冲调制。固体激光器输出功率较高,因此,在增大面积以降低能量密度的同时,要求可饱和吸收体具有高损伤阈值。
通常,高功率可饱和吸收器件的制作方法包括两种:一种方法是直接将TMDs沉积在谐振腔镜或增益晶体上,操作难度大且腔镜和晶体使用受限;另一种方法是将生长完成的TMDs转移至目标基底,该方法应用灵活,是制作固体激光器中TMDs可饱和吸收器件最常用的方法。以化学气相沉积法制备的TMDs为例,转移过程如图2所示。首先,将附有聚合物薄膜(PVA、PMMA等)的TMD置于化学溶液中,待生长基底完全腐蚀后,用去离子水反复清洗,然后,将TMD转移至目标基底,最后采用有机溶剂(丙酮等)将聚合物薄膜腐蚀,完成TMD可饱和吸收器件的制作,目标基底为相应激光波段的透镜或反射镜[50-53]。
3.2 光纤激光器可饱和吸收器件
在光纤激光器中,TMDs可饱和吸收器件的制作方法主要有以下4种:
第一种方法,将制备完成的TMD附着于聚合物薄膜(PVA、PMMA等)上,薄膜厚度约为几十毫米[54-57]。然后,将薄膜置于两个光纤连接头之间构成透射式可饱和吸收器件,或置于光纤连接头与反射镜之间构成反射式可饱和吸收器件。此种三明治结构的优势是激光与可饱和吸收体的相互作用面积大,利于脉冲调制。但是聚合物薄膜的热稳定性较差,高功率激光会改变其特性甚至损伤可饱和吸收体,因此应用受限。
第二种方法,采用转移法或光学沉积法将TMD直接转移至光纤端面上。具体操作与3.1节所述转移至固体基底的方法相同。光学沉积法是将光纤置于TMD沉积液中,光纤端面透射出的光场呈温度梯度分布,TMD沿温度梯度方向移动进而附着在光纤端面上[23]。采用此种方法可以增大激光与器件的相互作用面积,但存在污染或损伤光纤端面的风险,且光纤连接头不能重复使用。
第三种方法,将TMD转移至D型光纤或锥形光纤中[58]。TMD位于D型光纤剖面或锥形光纤锥区内,与倏逝波相互作用。具有作用距离长,光密度低,对TMD损伤小的优点,然而其脉冲调制效果取决于TMD与光纤的连接情况,因此容易导致脉冲调制的不稳定。
第四种方法,采用空芯光纤或光子晶体光纤作载体[59-60],将TMD分散液填充至光纤内。待液体干燥后接入激光器内。该方法可以获得较长的相互作用距离,但不同光纤间耦合难度高,且液体残留会引入较大的插入损耗。
4. 基于新型TMDs的超快激光器
近年来,超快激光器因其广泛的应用前景受到许多研究人员的青睐。实现超快激光输出的途径主要包括调Q技术和锁模技术,核心器件为脉冲调制器件。具备可饱和吸收特性的新型TMDs可以作为脉冲调制器件应用于超快激光器中,本节对基于新型TMDs的超快固体激光器和超快光纤激光器进行总结。
4.1 基于新型TMDs的超快固体激光器
固体激光器具有结构灵活、激光增益高、可覆盖波段宽、输出功率高等优点,在工业加工、光通信、非线性光学等领域具有广泛应用。2013年,中国科学院上海光学精密机械与物理研究所的Wang等发现,以波长为800 nm的飞秒脉冲激发MoS2纳米片分散液时,MoS2表现出明显的可饱和吸收特性[61],这一发现开启了TMDs应用于脉冲激光器的大门。2014年,TMDs首次作为可饱和吸收体应用于超快固体激光器[62],基于Nd: YAlO3晶体实现了调Q激光输出,证明了TMDs应用于超快固体激光器的能力。从此以后,科研人员利用传统TMDs(MoS2、WS2、MoSe2和WSe2)获得了从近红外到中红外波段的调Q或锁模超快固体激光输出。
随着材料制备工艺的提升以及应用需求的增长,近三年来,新型TMDs在超快光纤激光器中的应用愈加广泛。以ReS2(Rhenium Disulfide)为例进行说明,研究表明ReS2具有特殊的弯曲1 T结构,层间耦合极弱[63]。因此,有别于传统TMDs带隙结构取决于材料层数[64-65],单层ReS2和块状ReS2均为直接带隙半导体,带隙宽度几乎相同,分别为~1.43 eV和~1.35 eV[66-67],有利于超短脉冲激光的产生。早期研究主要集中于面向晶体管和探测器应用的光电特性和线性光学特性[66、68]。2017年,Xiancui Su等[69]首次将ReS2可饱和吸收体应用于全固态激光器,获得的激光输出是基于二维材料的中红外调Q激光器中最短脉宽输出[69],激光波长为2.8 μm、脉冲宽度为403 ns。该项研究验证了ReS2在全固态激光器中具有优异的脉冲调制特性。典型的全固态脉冲激光器结构如图3所示,包括泵浦源、泵浦耦合系统、谐振腔镜、增益介质及脉冲调制器件。2018年,该研究团队探究了ReS2在可见光至中红外波段的可饱和吸收特性,结合不同晶体实现了0.64 μm、1.064 μm和1.991 μm三波长调Q激光输出,并在1 μm波段首次验证了ReS2的锁模能力,进一步说明了ReS2的宽波段脉冲调制特性[70]。同年,Shuo Han等采用ReS2可饱和吸收体,在Nd: YAG晶体中实现了近红外波段双波长调Q激光输出[70]。
2019年,Chunhua Zuo团队[44]和Mingxi Lin团队[71]将ReS2可饱和吸收体应用于Ho, Pr: LiLuF4块状激光器和Nd: YAG激光器中,分别在2.95 μm和1.3 μm处获得了脉冲宽度为676 ns的调Q激光输出,进一步拓宽了ReS2的调制范围。
与ReS2同时发展的新型TMDs包括PtSe2、ReSe2、MoTe2、WTe2及TiS2等,将它们应用于Tm: YAP、Nd: LuVO4、Nd: YVO4、Er: YAP、Tm: YLF等固体激光器中,分别获得了调Q与锁模激光输出。表1对新型TMDs的非线性特性及基于可饱和吸收体的超快固体激光器参数进行了总结。
表 1 基于新型TMD可饱和吸收体的超快固体激光器Table 1. Ultrafast solid-state lasers with emerging TMD saturable absorbersTMD 饱和能量 调制深度 调制方式 增益介质 中心波长 重复频率 脉冲宽度 单脉冲能量/平均功率 参考
文献ReS2 22.6 μJ/cm2 9.7% 调Q Er:YSGG 2.8 μm 126 kHz 324 ns 104 mW [69] 58.2 μJ/cm2 21.5 μJ/cm2 2.7 μJ/cm2 3%
5.2%
2.9%调Q/锁模 Pr:YLF、
Nd:YAG、
Tm:YAP调Q:0.64 μm、1.064 μm、1.991 μm,锁模:
1.06 μm调Q:520 kHz、644 kHz、67.7 kHz,锁模:
50.7 MHz调Q:160 ns、139 ns、415 ns,锁模:323 fs 调Q:0.625 W、1.34 W、8.72 W,锁模:350 mW 11.89 GW/cm2 48% 调Q Nd:YAG 0.95 μm/
1.06 μm165 kHz 834 ns 81 mW [70] 23.5 μJ/cm2 10.2% 调Q Ho,Pr:LiLuF4 2.95 μm 91.5 kHz 676 ns 1.13 μJ [44] 15.6 μJ/cm2 15% 调Q Nd:YAG 1.3 μm 214 kHz 403 ns 0.42 μJ [71] PtSe2 17.1 μJ/cm2 12.6% 锁模 Nd:LuVO4 1066 nm 61.3 MHz 15.8 ps 180 mW [72] 3.2 μJ/cm2 6.6% 调Q Tm:YAP 1 987 nm 58 kHz 244 ns 24.3 μJ [73] 0.47 GW/cm2 1.9% 调Q锁模 Nd:YAG 1064 nm 8.8 GHz 27 ps 127 mW [74] ReSe2 — — 调Q Tm:YLF/Tm:Y2O3 1 900 nm/
2050 nm54 kHz/
106 kHz527.9 ns/
727 ns862 mW/
1.04 W[75] 12.8 GW/cm2 2.9% 调Q Nd:Y3Al5O12 1.06 μm 274 MHz 1.08 μs 2.5 μJ [76] 14.5 μJ/cm2 7.5% 调Q Er:YAP 2.73 μm/
2.8 μm244.6 kHz 202.8 ns 526 mW [77] 12.8 GW/cm2 2.9% 锁模 固体波导 1064 nm 6.5 GHz 29 ps 250 mW [78] 6.37 MW/cm2 1.89% 调Q Nd:YVO4 1064.4 nm 84.16 kHz 682 ns 125 mW [79] 4.3 μJ/cm2 7.3% 调Q Tm:YAP 2 μm 89.4 kHz 925.8 ns 17.6 μJ [46] MoTe2 0.14 mJ/cm2 22% 调Q Ho,Pr:LiLuF4 2.95 μm 76.46 kHz 670 ns 0.95 μJ [80] 1.71 MW/cm2 — 调Q Yb:LaCa4O(BO3)3 1.03~1.04 μm 357 kHz 103 ns 6.6 μJ [81] 18 MW/cm2 4% 调Q Tm:CaYAlO4 1 929 nm 70.9 kHz 0.69 μs 10.58 μJ [82] 6.87 mJ/cm2 1.3% 调Q Er:YAG 1645 nm 41.59 kHz 1.048 μs 27.4 μJ [83] 2.26 μJ/cm2 6.0% 调Q Tm:YAP 2 μm 144 kHz 380 ns 8.4 μJ [84] 1.71 MW/cm2 0.9% 调Q Yb:YCOB 1.03 μm 704 kHz 52 ns 2.25 μJ [85] 1.71 MW/cm2 0.9% 调Q Yb:KLu(WO4)2 1030.6 nm 2.18 MHz 36 ns 1.3 μJ [86] WTe2 5.1 μJ/cm2 7.2% 调Q Tm:YAP 1 938 nm 78 kHz 368 ns 4.8 μJ [87] 1.97 mJ/cm2 20.9% 调Q Ho,Pr:LiLuF4 2 954.7 nm 92 kHz 366 ns 1.4 μJ [88] TiS2 3.37 mJ/cm2 8% 调Q Er:YAG 1645 nm 38 kHz 1.2 μs 37.4 μJ [89] TMDs本身的带隙相对较大,对应可见光光谱,作为可饱和吸收体应用于调Q、锁模激光器时,吸收波长多为近红外至中红外波段,尽管材料本身在该波段内没有响应,但是在一定范围内引入缺陷可以改变带隙大小,使其在近红外波段至中红外波段产生非线性吸收。
4.2 基于新型TMDs的超快光纤激光器
光纤激光器具有光束质量好、稳定性高、散热性能好、转换效率高等优点,在军事、激光医疗、激光雷达等领域具有广泛应用。TMDs于2014年开始作为可饱和吸收体应用于光纤激光器[90],其中,利用MoS2、WS2、MoSe2和WSe2已经获得从近红外到中红外波段的调Q或锁模超快光纤激光输出。
在采用新型TMDs实现超快固体激光输出的同时,基于新型TMDs的光纤激光器也得到了广泛研究。以直接带隙材料ReS2为例,2017年,Yudong Cui等首次验证了ReS2在红外波段的非线性吸收特性,并成功将其应用于掺铒光纤激光器中[91],实现了中心波长为1564 nm、重复频率为3.43 MHz、脉冲宽度为1.25 ps的锁模激光输出。基于新型TMDs的环形腔光纤激光器的一般结构装置如图4所示,主要包括半导体泵浦源、单模光纤、掺杂光纤、光纤耦合器、光隔离器及可饱和吸收器件。
随后,D. Mao等采用ReS2可饱和吸收体实现了调Q光纤激光输出,中心波长为1558.6 nm,且重复频率和脉冲宽度可调谐[92]。接着,F. F. Lu等开展了光纤激光器谐波锁模技术的研究[93],研究结果进一步表明了ReS2应用于超快光纤激光器的独特优势。2018年,Ruwei Zhao等实现了1.5 μm波段多波长锁模激光输出,实验结果表明,ReS2可饱和吸收体具备产生亮暗孤子对的能力[94]。而后,Baole Lu等首次将ReS2可饱和吸收体应用于掺镱光纤激光器,获得了1 μm调Q激光输出,证明了ReS2的宽带可饱和吸收特性[95]。
其他应用于超快光纤激光器的新型TMDs包括PtSe2、ReSe2、MoTe2、WTe2及TiS2等。表2对目前基于新型TMDs可饱和吸收体的超快光纤激光器的参数和特性进行了总结。
表 2 基于新型TMD可饱和吸收体的超快光纤激光器Table 2. Ultrafast fiber lasers with emerging TMD saturable absorbersTMD 饱和能量 调制深度 调制方式 光纤掺杂 中心波长 重复频率 脉冲宽度 单脉冲能量/平均功率 参考
文献ReS2 27 μJ/cm2 1% 锁模 Er 1564 nm 3.43 MHz 1.25 ps — [91] 74 MW /cm2 0.12% 调Q/锁模 Er 1558.6 nm 12.6~19 kHz/
5.48 MHz23~5.49 μs/1.6 ps 22~62.8 μJ [92] — — 锁模 Er 1.5 μm 1.896 MHz — 12 mW [93] 8.4 MW/cm2 44% 调Q Yb 1047 nm 134 kHz 1.56 μs 13.02 nJ [94] 27.5 μJ/cm2 6.9% 锁模 Er 1573.6 nm/
1591.1 nm/
1592.6 nm13.39 MHz — — [95] PtSe2 0.346 GW/cm2 26% 锁模 Yb 1064.47 nm 4.08 MHz 470 ps 2.31 nJ [96] 9.48 MW/cm2 6.9% 锁模 Er 1550 nm 8.24 MHz 861 fs 78.52 nJ [45] 0.34~1.23 GW/cm2 1.11%~4.9% 调Q/锁模 Er 1560 nm 锁模:23.3 MHz 锁模:1.02 ps 调Q:143.2 nJ
锁模:0.53 nJ[97] ReSe2 — — 调Q Yb 1.06 μm 17.89~39.86 kHz 2.27 μs 30.4 nJ [98] — 3.9% 锁模 Er 1560 nm 14.97 MHz 862 fs 0.5 mW [99] — 7% 调Q Er 1566 nm 16.64 kHz 4.98 μs 36 nJ [100] MoTe2 3.46 MW/cm2 48.85% 锁模 Er 1559 nm 1.8 MHz 2.46 ps 0.11 mW [101] 0.969 MW/cm2 26.97% 锁模 Er 1561 nm 96.323 MHz 111.9 fs 23.4 mW [102] 26.45 MW/cm2 17.47% 调Q Er 1559 nm 148~228 kHz 677 ns 109 nJ [103] 8.3 MW /cm2 5.7% 锁模 Tm 1 930 nm 14.353 MHz 952 fs 2.56 nJ [47] 9.6 MW/cm2@
1.5 μm、12.3 MW/cm2@2 μm25.5%@1.5 μm、22.1%@
2 μm锁模 Er/Tm 1.5 μm/2 μm 25.601 MHz/
15.37 MHz229 fs/1.3 ps 2.14 nJ/13.8 nJ [104] WTe2 7.6 MW/cm2 31% 锁模 Tm 1915.5 nm 18.72 MHz 1.25 ps 39.9 mW [48] — 2.18% 调Q Yb 1044 nm 19~79 kHz 1 μs 28.3 nJ [105] 0.515 MW/cm2 31.06% 调Q Er 1531 nm 144.7~240 kHz 583 ns 58.625 nJ [106] TiS2 — 8.3% 锁模/调Q Er 1563.3 nm/
1560.2 nm22.7 MHz/
33.387 kHz1.25 ps/4.01 μs 25.3 pJ/9.5 nJ [107] 772.2 GW /cm2 — 锁模 Er 1550 nm 5.7 MHz 618 fs 0.28~1.2 mW [49] 5. 总结与展望
本文介绍了过渡金属硫化物的物理特性,阐述了TMD可饱和吸收器件的制作方法,归纳了基于新型TMDs的超快激光器的研究进展。
在固体激光器中,增益介质包括掺杂Nd、Yb、Er、Tm、Ho、Pr离子的多种晶体,输出激光覆盖近红外至中红外波段(1~3 μm)。文中涉及到的新型TMDs作为可饱和吸收体均实现了调Q激光输出,最短调Q脉冲宽度为36 ns;只有ReS2与ReSe2作为可饱和吸收体实现了锁模激光输出,最短锁模脉冲宽度为323 fs。
在光纤激光器中,以掺Er、掺Yb光纤激光器的脉冲调制研究为主,实现了最短脉冲宽度为111.9 fs的1~1.5 μm波段的激光输出;MoTe2与WTe2可饱和吸收体应用于掺Tm光纤激光器,获得了最短脉冲宽度为952 fs的2 μm波段激光输出。
综上所述,新型TMDs在超快激光领域已获得了广泛应用,实现了多波段的调Q和锁模激光输出。固体激光器以调Q技术为主,其原因是TMDs的固有吸收损耗较大,固体介质受尺寸制约增益有限,产生锁模所需强度的非线性效应较为困难。然而,固体激光器的增益介质种类丰富,基于不同晶体实现了宽谱段超快激光输出,验证了新型TMDs的宽带饱和吸收特性。光纤激光器中,已实现的波段具有局限性,且TMDs尺寸受限于光纤纤芯直径,为避免材料损伤,激光功率通常较低。另一方面,通过增加掺杂光纤长度能够提高增益,进而弥补材料损耗,因此较易实现锁模激光输出,新型TMDs的非线性调制能力已得到验证。
目前,新型TMDs应用于超快激光器的研究仍处于起步阶段,在过渡金属硫化物家族中,对于大部分材料饱和吸收特性的研究尚未展开,更多新奇的物理特性等待研究人员发掘。除此之外,未来主要研究方向包括以下几方面:
(1)材料性能提升。现有新型TMDs材料普遍具有损伤阈值低、可重复性差的缺点,不利于激光功率及稳定性的提升。通过改进制备方法、引入掺杂元素、结合其他材料构筑异质结等方式可以提升材料性能,获得可重复制备的吸收带宽更宽、恢复时间更短、稳定性更好的高性能材料。
(2)新特性及机理研究。基于新型TMDs的超快激光器研究集中于TMDs的饱和吸收特性及实验研究,对材料开展偏振特性等新特性研究能够拓宽其在超快激光领域的应用,开展脉冲调制机理研究对影响因素进行理论剖析,有利于从原理上提升其性能。
(3)宽谱段及商业应用。目前新型TMDs作为可饱和吸收体的应用集中于近红外波段,利用其宽谱段调制特性,结合新型激光体制及非线性频率变换技术可将波长拓展至可见至中红外波段,此外,目前新型TMDs在超快激光中的应用处于实验室研究阶段,提高其稳定性等性能后将向商业应用发展。
自二维石墨烯材料应用于超快激光以来,有关二维材料饱和吸收特性的研究得到了飞速发展。新型过渡金属硫化物因其独特的物理特性,为开拓二维材料对激光调制的新效应、新应用提供了新机遇,随着其性能的提升及对调制机理的深入研究,新型过渡金属硫化物在超快激光中的应用将得到更大的发展。
-
图 1 典型TMD图像。(a)光学图像;(b)扫描电镜图像;(c)原子力显微镜图像;(d、e)低倍、高倍透射电镜图像[40]
Figure 1. Typical images of TMD. (a) Optical image. (b) SEM image. (c) AFM image. (d, e) Low- and high-magnification TEM images
表 1 基于新型TMD可饱和吸收体的超快固体激光器
Table 1. Ultrafast solid-state lasers with emerging TMD saturable absorbers
TMD 饱和能量 调制深度 调制方式 增益介质 中心波长 重复频率 脉冲宽度 单脉冲能量/平均功率 参考
文献ReS2 22.6 μJ/cm2 9.7% 调Q Er:YSGG 2.8 μm 126 kHz 324 ns 104 mW [69] 58.2 μJ/cm2 21.5 μJ/cm2 2.7 μJ/cm2 3%
5.2%
2.9%调Q/锁模 Pr:YLF、
Nd:YAG、
Tm:YAP调Q:0.64 μm、1.064 μm、1.991 μm,锁模:
1.06 μm调Q:520 kHz、644 kHz、67.7 kHz,锁模:
50.7 MHz调Q:160 ns、139 ns、415 ns,锁模:323 fs 调Q:0.625 W、1.34 W、8.72 W,锁模:350 mW 11.89 GW/cm2 48% 调Q Nd:YAG 0.95 μm/
1.06 μm165 kHz 834 ns 81 mW [70] 23.5 μJ/cm2 10.2% 调Q Ho,Pr:LiLuF4 2.95 μm 91.5 kHz 676 ns 1.13 μJ [44] 15.6 μJ/cm2 15% 调Q Nd:YAG 1.3 μm 214 kHz 403 ns 0.42 μJ [71] PtSe2 17.1 μJ/cm2 12.6% 锁模 Nd:LuVO4 1066 nm 61.3 MHz 15.8 ps 180 mW [72] 3.2 μJ/cm2 6.6% 调Q Tm:YAP 1 987 nm 58 kHz 244 ns 24.3 μJ [73] 0.47 GW/cm2 1.9% 调Q锁模 Nd:YAG 1064 nm 8.8 GHz 27 ps 127 mW [74] ReSe2 — — 调Q Tm:YLF/Tm:Y2O3 1 900 nm/
2050 nm54 kHz/
106 kHz527.9 ns/
727 ns862 mW/
1.04 W[75] 12.8 GW/cm2 2.9% 调Q Nd:Y3Al5O12 1.06 μm 274 MHz 1.08 μs 2.5 μJ [76] 14.5 μJ/cm2 7.5% 调Q Er:YAP 2.73 μm/
2.8 μm244.6 kHz 202.8 ns 526 mW [77] 12.8 GW/cm2 2.9% 锁模 固体波导 1064 nm 6.5 GHz 29 ps 250 mW [78] 6.37 MW/cm2 1.89% 调Q Nd:YVO4 1064.4 nm 84.16 kHz 682 ns 125 mW [79] 4.3 μJ/cm2 7.3% 调Q Tm:YAP 2 μm 89.4 kHz 925.8 ns 17.6 μJ [46] MoTe2 0.14 mJ/cm2 22% 调Q Ho,Pr:LiLuF4 2.95 μm 76.46 kHz 670 ns 0.95 μJ [80] 1.71 MW/cm2 — 调Q Yb:LaCa4O(BO3)3 1.03~1.04 μm 357 kHz 103 ns 6.6 μJ [81] 18 MW/cm2 4% 调Q Tm:CaYAlO4 1 929 nm 70.9 kHz 0.69 μs 10.58 μJ [82] 6.87 mJ/cm2 1.3% 调Q Er:YAG 1645 nm 41.59 kHz 1.048 μs 27.4 μJ [83] 2.26 μJ/cm2 6.0% 调Q Tm:YAP 2 μm 144 kHz 380 ns 8.4 μJ [84] 1.71 MW/cm2 0.9% 调Q Yb:YCOB 1.03 μm 704 kHz 52 ns 2.25 μJ [85] 1.71 MW/cm2 0.9% 调Q Yb:KLu(WO4)2 1030.6 nm 2.18 MHz 36 ns 1.3 μJ [86] WTe2 5.1 μJ/cm2 7.2% 调Q Tm:YAP 1 938 nm 78 kHz 368 ns 4.8 μJ [87] 1.97 mJ/cm2 20.9% 调Q Ho,Pr:LiLuF4 2 954.7 nm 92 kHz 366 ns 1.4 μJ [88] TiS2 3.37 mJ/cm2 8% 调Q Er:YAG 1645 nm 38 kHz 1.2 μs 37.4 μJ [89] 表 2 基于新型TMD可饱和吸收体的超快光纤激光器
Table 2. Ultrafast fiber lasers with emerging TMD saturable absorbers
TMD 饱和能量 调制深度 调制方式 光纤掺杂 中心波长 重复频率 脉冲宽度 单脉冲能量/平均功率 参考
文献ReS2 27 μJ/cm2 1% 锁模 Er 1564 nm 3.43 MHz 1.25 ps — [91] 74 MW /cm2 0.12% 调Q/锁模 Er 1558.6 nm 12.6~19 kHz/
5.48 MHz23~5.49 μs/1.6 ps 22~62.8 μJ [92] — — 锁模 Er 1.5 μm 1.896 MHz — 12 mW [93] 8.4 MW/cm2 44% 调Q Yb 1047 nm 134 kHz 1.56 μs 13.02 nJ [94] 27.5 μJ/cm2 6.9% 锁模 Er 1573.6 nm/
1591.1 nm/
1592.6 nm13.39 MHz — — [95] PtSe2 0.346 GW/cm2 26% 锁模 Yb 1064.47 nm 4.08 MHz 470 ps 2.31 nJ [96] 9.48 MW/cm2 6.9% 锁模 Er 1550 nm 8.24 MHz 861 fs 78.52 nJ [45] 0.34~1.23 GW/cm2 1.11%~4.9% 调Q/锁模 Er 1560 nm 锁模:23.3 MHz 锁模:1.02 ps 调Q:143.2 nJ
锁模:0.53 nJ[97] ReSe2 — — 调Q Yb 1.06 μm 17.89~39.86 kHz 2.27 μs 30.4 nJ [98] — 3.9% 锁模 Er 1560 nm 14.97 MHz 862 fs 0.5 mW [99] — 7% 调Q Er 1566 nm 16.64 kHz 4.98 μs 36 nJ [100] MoTe2 3.46 MW/cm2 48.85% 锁模 Er 1559 nm 1.8 MHz 2.46 ps 0.11 mW [101] 0.969 MW/cm2 26.97% 锁模 Er 1561 nm 96.323 MHz 111.9 fs 23.4 mW [102] 26.45 MW/cm2 17.47% 调Q Er 1559 nm 148~228 kHz 677 ns 109 nJ [103] 8.3 MW /cm2 5.7% 锁模 Tm 1 930 nm 14.353 MHz 952 fs 2.56 nJ [47] 9.6 MW/cm2@
1.5 μm、12.3 MW/cm2@2 μm25.5%@1.5 μm、22.1%@
2 μm锁模 Er/Tm 1.5 μm/2 μm 25.601 MHz/
15.37 MHz229 fs/1.3 ps 2.14 nJ/13.8 nJ [104] WTe2 7.6 MW/cm2 31% 锁模 Tm 1915.5 nm 18.72 MHz 1.25 ps 39.9 mW [48] — 2.18% 调Q Yb 1044 nm 19~79 kHz 1 μs 28.3 nJ [105] 0.515 MW/cm2 31.06% 调Q Er 1531 nm 144.7~240 kHz 583 ns 58.625 nJ [106] TiS2 — 8.3% 锁模/调Q Er 1563.3 nm/
1560.2 nm22.7 MHz/
33.387 kHz1.25 ps/4.01 μs 25.3 pJ/9.5 nJ [107] 772.2 GW /cm2 — 锁模 Er 1550 nm 5.7 MHz 618 fs 0.28~1.2 mW [49] -
[1] SIBBETT W, LAGATSKY A A, BROWN C T A. The development and application of femtosecond laser systems[J]. Optics Express, 2012, 20(7): 6989-7001. doi: 10.1364/OE.20.006989 [2] YE J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 2004, 29(10): 1153-1155. doi: 10.1364/OL.29.001153 [3] 岱钦, 毛有明, 吴凯旋, 等. 脉冲激光测距中高速精密时间间隔测量研究[J]. 液晶与显示,2015,30(1):83-88. doi: 10.3788/YJYXS20153001.0083DAI Q, MAO Y M, WU K X, et al. High speed and high precision time-interval measurement system in pulsed laser ranging[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1): 83-88. (in Chinese) doi: 10.3788/YJYXS20153001.0083 [4] 高慧, 赵佳宇, 刘伟伟. 超快激光成丝现象的多丝控制[J]. 光学 精密工程,2013,21(3):698-607.GAO H, ZHAO J Y, LIU W W. Control of multiple filamentation induced by ultrafast laser pulse[J]. Optics and Precision Engineering, 2013, 21(3): 698-607. (in Chinese) [5] TRÄGER F. Handbook of Lasers and Optics[M]. 2nd ed. New York: Springer, 2012. [6] 姜可, 谢冀江, 杨贵龙, 等. GaSe晶体的双光子吸收对太赫兹输出的影响[J]. 发光学报,2015,36(3):361-365. doi: 10.3788/fgxb20153603.0361JIANG K, XIE J J, YANG G L, et al. Two-photon absorption attenuated THz generation in GaSe[J]. Chinese Journal of Luminescence, 2015, 36(3): 361-365. (in Chinese) doi: 10.3788/fgxb20153603.0361 [7] TANTER M, TOUBOUL D, GENNISSON J L, et al. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J]. IEEE Transactions on Medical Imaging, 2009, 28(12): 1881-1893. doi: 10.1109/TMI.2009.2021471 [8] CHOU S Y, KEIMEL C, GU J. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837. doi: 10.1038/nature00792 [9] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838. doi: 10.1038/nature01938 [10] 李景照, 陈振强, 朱思祁. 基于Yb: YAG/Cr4+: YAG/YAG键合晶体的被动调Q激光器[J]. 光学 精密工程,2018,26(1):55-61. doi: 10.3788/OPE.20182601.0055LI J ZH, CHEN ZH Q, ZHU S Q. Passively Q-switched laser with a Yb: YAG/Cr4+: YAG/YAG composite crystal[J]. Optics and Precision Engineering, 2018, 26(1): 55-61. (in Chinese) doi: 10.3788/OPE.20182601.0055 [11] 程秀凤, 陈丽娟, 韩树娟, 等. LD端面泵浦Nd: LiGd(MoO4)2晶体的主动调Q脉冲激光特性[J]. 光学 精密工程,2013,21(4):836-840.CHENG X F, CHEN L J, HAN SH J, et al. Actively Q-switched pulse laser from LD end-pumped Nd: LiGd(MoO4)2 crystals[J]. Optics and Precision Engineering, 2013, 21(4): 836-840. (in Chinese) [12] 王加贤, 庄鑫巍. 基于半导体可饱和吸收镜实现闪光灯抽运Nd: YAG激光器的被动调Q与锁模[J]. 光学 精密工程,2006,14(4):584-588.WANG J X, ZHUANG X W. Passive Q-switching and mode-locking in a flashlamp-pumped Nd: YAG laser with semiconductor saturable absorption mirror[J]. Optics and Precision Engineering, 2006, 14(4): 584-588. (in Chinese) [13] 余锦, 刘伟仁. 1.0 μm掺钕介质全固化调Q脉冲激光技术[J]. 光学 精密工程,2000,8(2):297-302.YU J, LIU W R. All-solid-state Q-switched lasers with Nd3+-doped crystals oscillating at 1.0 μm[J]. Optics and Precision Engineering, 2000, 8(2): 297-302. (in Chinese) [14] 王蓟, 王国政, 刘洋, 等. 全光纤声光调Q铒镱共掺双包层光纤激光器[J]. 发光学报,2008,29(6):1018-1022.WANG J, WANG G ZH, LIU Y, et al. All-fiber acousto-optic Q-switched Er3+/Yb3+ co-doped double-cladding fiber lasers[J]. Chinese Journal of Luminescence, 2008, 29(6): 1018-1022. (in Chinese) [15] 王国立, 郭亨群, 苏培林, 等. nc-Si/SiNx超晶格薄膜实现Nd: YAG激光器调Q和锁模[J]. 发光学报,2008,29(5):905-909.WANG G L, GUO H Q, SU P L, et al. Passive Q-switching and mode locking of pulsed Nd: YAG laser with nc-Si/SiNx multilayer[J]. Chinese Journal of Luminescence, 2008, 29(5): 905-909. (in Chinese) [16] 张伶莉, 孙秀冬, 刘永军, 等. 具有外部谐振腔的胆甾相液晶激光器的研究[J]. 液晶与显示,2013,28(5):679-682. doi: 10.3788/YJYXS20132805.0679ZHANG L L, SUN X D, LIU Y J, et al. Cholesteric liquid crystals laser with external cavity[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(5): 679-682. (in Chinese) doi: 10.3788/YJYXS20132805.0679 [17] 苏晶, 刘玉荣, 莫昌文, 等. ZnO基薄膜晶体管有源层制备技术的研究进展[J]. 液晶与显示,2013,28(3):315-322. doi: 10.3788/YJYXS20132803.0315SU J, LIU Y R, MO CH W, et al. Research development on preparation technologies of active layer preparation of ZnO-based thin film[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 315-322. (in Chinese) doi: 10.3788/YJYXS20132803.0315 [18] ZIRNGIBL M, STULZ L W, STONE J, et al. 1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser[J]. Electronics Letters, 1991, 27(19): 1734-1735. doi: 10.1049/el:19911079 [19] WEI CH, SHI H X, LUO H Y, et al. 34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser[J]. Optics Express, 2017, 25(16): 19170-19178. doi: 10.1364/OE.25.019170 [20] TANG P H, QIN ZH P, LIU J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855-4858. doi: 10.1364/OL.40.004855 [21] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453. doi: 10.1073/pnas.0502848102 [22] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193 [23] CHEN Y, JIANG G B, CHEN SH Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833. doi: 10.1364/OE.23.012823 [24] JIANG X T, LIU SH X, LIANG W Y, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH)[J]. Laser &Photonics Review, 2018, 12(2): 1700229. [25] WANG SH X, YU H H, ZHANG H J, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544. doi: 10.1002/adma.201306322 [26] WANG M X, ZHANG F, WANG ZH P, et al. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber[J]. Optics Express, 2018, 26(4): 4085-4095. doi: 10.1364/OE.26.004085 [27] GUO J, HUANG D ZH, ZHANG Y, et al.. 2D GeP as a novel broadband nonlinear optical material for ultrafast photonics[J]. Laser &Photonics Reviews, 2019, 13: 1900123. [28] MOHANRAJ J, VELMURUGAN V, SIVABALAN S. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology[J]. Optical Materials, 2016, 60: 601-617. doi: 10.1016/j.optmat.2016.09.007 [29] TIU Z C, OOI S I, GUO J, et al. Review: application of transition metal dichalcogenide in pulsed fiber laser system[J]. Materials Research Express, 2019, 6(8): 082004. doi: 10.1088/2053-1591/ab2257 [30] LI H, LU G, WANG Y L, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small, 2013, 9(11): 1974-1981. doi: 10.1002/smll.201202919 [31] COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. doi: 10.1126/science.1194975 [32] MAK K F, HE K L, SHAN J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498. doi: 10.1038/nnano.2012.96 [33] BERTOLAZZI S, BRIVIO J, KIS A. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703-9709. doi: 10.1021/nn203879f [34] LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325. doi: 10.1002/adma.201104798 [35] NAJMAEI S, LIU ZH, ZHOU W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nature Materials, 2013, 12(8): 754-759. doi: 10.1038/nmat3673 [36] REN L, QI X, LIU Y D, et al. Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route[J]. Journal of Materials Chemistry, 2012, 22(11): 4921-4926. doi: 10.1039/c2jm15973b [37] PRADO G, FOURNÈS L, DELMAS C. On the LixNi0.70Fe0.15Co0.15O2 system: an X-ray diffraction and mössbauer study[J]. Journal of Solid State Chemistry, 2001, 159(1): 103-112. doi: 10.1006/jssc.2001.9137 [38] RAMAKRISHNA MATTE H S S, GOMATHI A, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie International Edition, 2010, 49(24): 4059-4062. doi: 10.1002/anie.201000009 [39] FOMINSKI V Y, NEVOLIN V N, ROMANOV R I, et al. Ion-assisted deposition of MoSx films from laser-generated plume under pulsed electric field[J]. Journal of Applied Physics, 2001, 89(2): 1449-1457. doi: 10.1063/1.1330558 [40] CONG CH X, SHANG J ZH, WU X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition[J]. Advanced Optical Materials, 2014, 2(2): 131-136. doi: 10.1002/adom.201300428 [41] REICHARDT S, WIRTZ L. Raman Spectroscopy of Graphene[M]. BINDER R. Optical Properties of Graphene. Singapore: World Scientific, 2017. [42] DRESSELHAUS M S, JORIO A, SAITO R. Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy[J]. Annual Review of Condensed Matter Physics, 2010, 1: 89-108. doi: 10.1146/annurev-conmatphys-070909-103919 [43] DRESSELHAUS M S, JORIO A, HOFMAN M, et al. Perspectives on carbon nanotubes and graphene raman spectroscopy[J]. Nano Letters, 2010, 10(3): 751-758. doi: 10.1021/nl904286r [44] ZUO CH H, CAO Y P, YANG Q, et al. Passively Q-switched 295-μm bulk laser based on rhenium disulfide as saturable absorber[J]. IEEE Photonics Technology Letters, 2019, 31(3): 206-209. doi: 10.1109/LPT.2018.2886784 [45] HUANG B, DU L, YI Q, et al. Bulk-structured PtSe2 for femtosecond fiber laser mode-locking[J]. Optics Express, 2019, 27(3): 2604-2611. doi: 10.1364/OE.27.002604 [46] YAO Y P, LI X W, SONG R G, et al. The energy band structure analysis and 2 μm Q-switched laser application of layered rhenium diselenide[J]. RSC Advances, 2019, 9(25): 14417-14421. doi: 10.1039/C9RA02311A [47] WANG J T, CHEN H, JIANG Z K, et al. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride[J]. Optics Letters, 2018, 43(9): 1998-2001. doi: 10.1364/OL.43.001998 [48] WANG J T, JIANG Z K, CHEN H, et al. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser[J]. Optics Letters, 2017, 42(23): 5010-5013. doi: 10.1364/OL.42.005010 [49] TIAN X L, WEI R F, LIU M, et al. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser[J]. Nanoscale, 2018, 10(20): 9608-9615. doi: 10.1039/C8NR01573B [50] WU K, CHEN B H, ZHANG X Y, et al. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited)[J]. Optics Communications, 2018, 406: 214-229. doi: 10.1016/j.optcom.2017.02.024 [51] TIAN Z, WU K, KONG L CH, et al. Mode-locked thulium fiber laser with MoS2[J]. Laser Physics Letters, 2015, 12(6): 065104. doi: 10.1088/1612-2011/12/6/065104 [52] WEI CH, LUO H Y, ZHANG H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13(10): 105108. doi: 10.1088/1612-2011/13/10/105108 [53] HOU J, ZHAO G, WU Y ZH, et al. Femtosecond solid-state laser based on tungsten disulfide saturable absorber[J]. Optics Express, 2015, 23(21): 27292-27298. doi: 10.1364/OE.23.027292 [54] CHEN B H, ZHANG X Y, WU K, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20): 26723-26737. doi: 10.1364/OE.23.026723 [55] WU K, ZHANG X Y, WANG J, et al. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers[J]. Optics Express, 2015, 23(9): 11453-11461. doi: 10.1364/OE.23.011453 [56] WU K, ZHANG X Y, WANG J, et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber[J]. Optics Letters, 2015, 40(7): 1374-1377. doi: 10.1364/OL.40.001374 [57] WANG Q K, CHEN Y, MIAO L L, et al. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer[J]. Optics Express, 2015, 23(6): 7681-7693. doi: 10.1364/OE.23.007681 [58] XING CH Y, XIE ZH J, LIANG ZH M, et al. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics[J]. Advanced Optical Materials, 2017, 5(24): 1700884. doi: 10.1002/adom.201700884 [59] YAN P G, LIN R Y, CHEN H, et al. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2015, 27(3): 264-267. doi: 10.1109/LPT.2014.2361915 [60] YAN P G, LIU A J, CHEN Y SH, et al. Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber[J]. Scientific Reports, 2015, 5(1): 12587. doi: 10.1038/srep12587 [61] WANG K P, WANG J, FAN J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267. doi: 10.1021/nn403886t [62] XU B, CHENG Y J, WANG Y, et al. Passively Q-switched Nd: YAlO3 nanosecond laser using MoS2 as saturable absorber[J]. Optics Express, 2014, 22(23): 28934-28940. doi: 10.1364/OE.22.028934 [63] TONGAY S, SAHIN H, KO C, et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling[J]. Nature Communications, 2014, 5(1): 3252. doi: 10.1038/ncomms4252 [64] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275. doi: 10.1038/nchem.1589 [65] XU M SH, LIANG T, SHI M M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798. doi: 10.1021/cr300263a [66] LIU E F, FU Y J, WANG Y J, et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors[J]. Nature Communications, 2015, 6(1): 6991. doi: 10.1038/ncomms7991 [67] TIAN H, CHIN M L, NAJMAEI S, et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides[J]. Nano Research, 2016, 9(6): 1543-1560. doi: 10.1007/s12274-016-1034-9 [68] ZHANG E Z, JIN Y B, YUAN X, et al. ReS2-based field-effect transistors and photodetectors[J]. Advanced Functional Materials, 2015, 25(26): 4076-4082. doi: 10.1002/adfm.201500969 [69] SU X C, ZHANG B T, WANG Y R, et al. Broadband rhenium disulfide optical modulator for solid-state lasers[J]. Photonics Research, 2018, 6(6): 498-505. doi: 10.1364/PRJ.6.000498 [70] HAN SH, ZHOU SH SH, LIU X L, et al. Rhenium disulfide-based passively Q-switched dual-wavelength laser at 0.95 μm and 1.06 μm in Nd: YAG[J]. Laser Physics Letters, 2018, 15(8): 085804. doi: 10.1088/1612-202X/aac983 [71] LIN M X, PENG Q Q, HOU W, et al. 1.3 μm Q-switched solid-state laser based on few-layer ReS2 saturable absorber[J]. Optics &Laser Technology, 2019, 109: 90-93. [72] TAO L L, HUANG X W, HE J SH, et al. Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd: LuVO4 laser[J]. Photonics Research, 2018, 6(7): 750-755. doi: 10.1364/PRJ.6.000750 [73] YAN B ZH, ZHANG B T, NIE H K, et al. Bilayer platinum diselenide saturable absorber for 2.0 μm passively Q-switched bulk lasers[J]. Optics Express, 2018, 26(24): 31657-31663. doi: 10.1364/OE.26.031657 [74] LI Z Q, LI R, PANG CH, et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber[J]. Optics Express, 2019, 27(6): 8727-8737. doi: 10.1364/OE.27.008727 [75] WANG SH Q, HUANG H T, LIU X, et al. Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers[J]. Optical Materials, 2019, 88: 630-634. doi: 10.1016/j.optmat.2018.12.042 [76] XUE Y CH, LI L, ZHANG B, et al. ReSe2 passively Q-switched Nd: Y3Al5 O12 laser with near repetition rate limit of microsecond pulse output[J]. Optics Communications, 2019, 455: 165-170. [77] YAO Y P, CUI N, WANG Q G, et al. Highly efficient continuous-wave and ReSe2 Q-switched ~3 μm dual-wavelength Er: YAP crystal lasers[J]. Optics Letters, 2019, 44(11): 2839-2842. doi: 10.1364/OL.44.002839 [78] LI Z Q, DONG N N, ZHANG Y X, et al. Invited Article: mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber[J]. APL Photonics, 2018, 3(8): 080802. doi: 10.1063/1.5032243 [79] LI CH, LENG Y X, HUO J J. Diode-pumped solid-state Q-switched laser with rhenium diselenide as saturable absorber[J]. Applied Sciences, 2018, 8(10): 1753. doi: 10.3390/app8101753 [80] YAN ZH Y, LI T, ZHAO SH ZH, et al. MoTe2 saturable absorber for passively Q-switched Ho, Pr: LiLuF4 laser at ~3 μm[J]. Optics and Laser Technology, 2018, 100: 261-264. doi: 10.1016/j.optlastec.2017.10.012 [81] LI Y H, XU Y F, XU G Y, et al. Performance of an Yb: LaCa4O(BO3)3 crystal laser at 1.03~1.04 μm passively Q-switched with 2D MoTe2 saturable absorber[J]. Infrared Physics &Technology, 2019, 99: 167-171. [82] ZHANG Y ZH, WANG J W, GUAN X F, et al. MoTe2-based broadband wavelength tunable eye-safe pulsed laser source at 1.9 μm[J]. IEEE Photonics Technology Letters, 2018, 30(21): 1890-1893. doi: 10.1109/LPT.2018.2871467 [83] LIANG Y Y, ZHAO J, QIAO W CH, et al. Passively Q-switched Er: YAG laser at 1645 nm utilizing a multilayer molybdenum ditelluride (MoTe2) saturable absorber[J]. Laser Physics Letters, 2018, 15(9): 095801. doi: 10.1088/1612-202X/aacfae [84] YAN B ZH, ZHANG B T, NIE H K, et al. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2 saturable absorber[J]. Optics Express, 2018, 26(14): 18505-18512. doi: 10.1364/OE.26.018505 [85] MA Y J, TIAN K, DOU X D, et al. Passive Q-switching induced by few-layer MoTe2 in an Yb: YCOB microchip laser[J]. Optics Express, 2018, 26(19): 25147-25155. doi: 10.1364/OE.26.025147 [86] TIAN K, LI Y H, YANG J N, et al. Passively Q-switched Yb: KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber[J]. Applied Physics B, 2019, 125(2): 24. doi: 10.1007/s00340-019-7135-x [87] CHEN L J, LI X, ZHANG H K, et al. Passively Q-switched 1.989 μm all-solid-state laser based on a WTe2 saturable absorber[J]. Applied Optics, 2018, 57(35): 10239-10242. doi: 10.1364/AO.57.010239 [88] YAN ZH Y, LI T, ZHAO J, et al. Tungsten ditelluride for a nanosecond Ho, Pr: LiLuF4 laser at 2.95 μm[J]. Laser Physics Letters, 2018, 15(4): 045801. doi: 10.1088/1612-202X/aaa94b [89] LI G Q, WU CH, YAN ZH Y, et al. TiS2 as a novel saturable absorber for a 1645 nm passively Q-switched laser[J]. Laser Physics, 2019, 29(5): 055801. doi: 10.1088/1555-6611/ab0d13 [90] WOODWARD R I, KELLEHER E J R, HOWE R C T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer Molybdenum disulfide (MoS2)[J]. Optics Express, 2014, 22(25): 31113-31122. doi: 10.1364/OE.22.031113 [91] CUI Y D, LU F F, LIU X M. Nonlinear saturable and polarization-induced absorption of rhenium disulfide[J]. Scientific Reports, 2017, 7(1): 40080. doi: 10.1038/srep40080 [92] MAO D, CUI X Q, GAN X T, et al. Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1100406. [93] LU F F. Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber[J]. Modern Physics Letters B, 2017, 31(18): 1750206. doi: 10.1142/S0217984917502062 [94] ZHAO R W, LI G R, ZHANG B T, et al. Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide[J]. Optics Express, 2018, 26(5): 5819-5826. doi: 10.1364/OE.26.005819 [95] LU B L, WEN Z R, HUANG K X, et al. Passively Q-switched Yb3+-doped fiber laser with ReS2 Saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(4): 1600104. [96] YUAN J, MU H R, LI L, et al. Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers[J]. ACS Applied Materials &Interfaces, 2018, 10(25): 21534-21540. [97] ZHANG K, FENG M, REN Y Y, et al. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber[J]. Photonics Research, 2018, 6(9): 893-899. doi: 10.1364/PRJ.6.000893 [98] LI Y H, LOU Y J, HE J S, et al. Q-switched ytterbium fiber laser based on rhenium diselenide as a saturable absorber[J]. Journal of Physics D:Applied Physics, 2019, 52(46): 465101. doi: 10.1088/1361-6463/ab3883 [99] LEE J, LEE K, KWON S, et al. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker[J]. Photonics Research, 2019, 7(9): 984-993. doi: 10.1364/PRJ.7.000984 [100] DU L, JIANG G B, MIAO L L, et al. Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator[J]. Optical Materials Express, 2018, 8(4): 926-935. doi: 10.1364/OME.8.000926 [101] WANG G M. Wavelength-switchable passively mode-locked fiber laser with mechanically exfoliated molybdenum ditelluride on side-polished fiber[J]. Optics &Laser Technology, 2017, 96: 307-312. [102] LIU M L, LIU W J, WEI ZH Y. MoTe2 saturable absorber with high modulation depth for erbium-doped fiber laser[J]. Journal of Lightwave Technology, 2019, 37(13): 3100-3105. doi: 10.1109/JLT.2019.2910892 [103] LIU M L, LIU W J, YAN P G, et al. High-power MoTe2-based passively Q-switched erbium-doped fiber laser[J]. Chinese Optics Letters, 2018, 16(2): 020007. doi: 10.3788/COL201816.020007 [104] WANG J T, JIANG Z K, CHEN H, et al. High energy soliton pulse generation by a magnetron -sputtering- deposition -grown MoTe2 saturable absorber[J]. Photonics Research, 2018, 6(6): 535-541. doi: 10.1364/PRJ.6.000535 [105] KO S, LEE J, LEE J H. Passively Q-switched ytterbium-doped fiber laser using the evanescent field interaction with bulk-like WTe2 particles[J]. Chinese Optics Letters, 2018, 16(2): 020017. doi: 10.3788/COL201816.020017 [106] LIU M L, OUYANG Y Y, HOU H R, et al. Q-switched fiber laser operating at 1.5 μm based on WTe2[J]. Chinese Optics Letters, 2019, 17(2): 020006. doi: 10.3788/COL201917.020006 [107] ZHU X, CHEN S, ZHANG M, et al. TiS2-based saturable absorber for ultrafast fiber lasers[J]. Photonics Research, 2018, 6(10): C44-C48. doi: 10.1364/PRJ.6.000C44 期刊类型引用(6)
1. 陈朋尧,任冰燕,张丞昱,李博远,王嘉熙,张凯旋,赵伟杰. WS_2/hBN/MoS_2异质结中的能量转移和光致发光增强(英文). 发光学报. 2024(12): 2021-2029 . 百度学术
2. 贾苏蒙,王蓟,白笑羽,郭欣宇,张永熙. 碳纳米管可饱和吸收体被动调Q掺铒光纤激光器. 长春理工大学学报(自然科学版). 2023(01): 7-11 . 百度学术
3. 张世达,耿乙迦. 碲化铋倏逝场锁模器件的超快光纤激光器. 中国光学. 2022(03): 433-442 . 百度学术
4. 陈哲学,王卫彪,梁程,张勇. 二维量子片及其光学研究进展. 中国光学. 2021(01): 1-17 . 百度学术
5. 陈少峰,侯兰凤. 生长在泡沫镍基底上的无规则多孔结构Ni_3S_2材料的制备及电化学性能. 四川师范大学学报(自然科学版). 2021(02): 257-261 . 百度学术
6. 黎晓华,林钰恒,刘新科. 基于二维材料架构的先进电子和光电子器件. 广东化工. 2021(09): 133-135 . 百度学术
其他类型引用(5)
-