留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

角膜塑形术后角膜面形分析及周边离焦研究

刘宝凯 刘永基 谢培英 郭曦 谷健达 于浩

刘宝凯, 刘永基, 谢培英, 郭曦, 谷健达, 于浩. 角膜塑形术后角膜面形分析及周边离焦研究[J]. 中国光学(中英文), 2020, 13(4): 770-777. doi: 10.37188/CO.2019-0248
引用本文: 刘宝凯, 刘永基, 谢培英, 郭曦, 谷健达, 于浩. 角膜塑形术后角膜面形分析及周边离焦研究[J]. 中国光学(中英文), 2020, 13(4): 770-777. doi: 10.37188/CO.2019-0248
LIU Bao-kai, LIU Yong-ji, XIE Pei-ying, GUO Xi, GU Jian-da, YU Hao. Analysis of the corneal surface and peripheral defocus after orthokeratology[J]. Chinese Optics, 2020, 13(4): 770-777. doi: 10.37188/CO.2019-0248
Citation: LIU Bao-kai, LIU Yong-ji, XIE Pei-ying, GUO Xi, GU Jian-da, YU Hao. Analysis of the corneal surface and peripheral defocus after orthokeratology[J]. Chinese Optics, 2020, 13(4): 770-777. doi: 10.37188/CO.2019-0248

角膜塑形术后角膜面形分析及周边离焦研究

基金项目: 天津市自然科学基金面上项目(No. 19JCYBJC16800);南开大学中央高校基本科研业务费专项资金资助(No. 63191105)
详细信息
    作者简介:

    刘宝凯(1994—),男,河北衡水人,硕士研究生,2013年于哈尔滨工程大学获得学士学位,主要研究方向为视光学。E-mail:823064666@qq.com

    刘永基(1977—),女,河北昌黎人,博士,副研究员,1999年于河北师范大学获学士学位,2002年于华中科技大学获硕士学位,2005年于南开大学获博士学位。主要研究方向为眼视光学、光学设计等。E-mail: yjliu@nankai.edu.cn

  • 中图分类号: TP394.1;TH691.9

Analysis of the corneal surface and peripheral defocus after orthokeratology

Funds: Supported by Natural Science Foundation of Tianjin (No. 19JCYBJC16800); Fundamental Research Funds for the Central Universities, Nankai University (No. 63191105)
More Information
  • 摘要: 本文提出了一种新的角膜面形分析方法,不仅消除了角膜本体厚度对塑形后角膜面形分析的影响,同时也能体现塑形后角膜的不对称性。在角膜前表面高度数据分析中引入基准参考面,以消除角膜本体厚度的影响,进而将塑形后的角膜前表面划分为光学区、转换区和边缘区。分析表明,角膜塑形后的光学区口径为(1.9±0.27) mm,曲率半径为(8.32±0.38) mm;转换区口径为(6.56±0.38) mm,曲率半径为(7.48±0.55) mm;边缘区的曲率半径为(10.49±1.83) mm。角膜塑形后的转换区水平方向屈光能力小于竖直方向的屈光能力,鼻侧屈光能力大于颞侧屈光能力,上侧屈光能力大于下侧屈光能力。利用所得参数建立半定制化的眼模型,对眼模型进行分析,结果表明:角膜塑形后周边呈近视性离焦,各方向的离焦呈非对称性分布,符合临床表现。

     

  • 图 1  颞侧方向上不同距离下的相对高度图

    Figure 1.  Relative height at different distances in the temporal direction

    图 2  角膜塑形镜示意图

    Figure 2.  Diagram of orthokeratology lens

    图 3  不同视场下的周边相对离焦。图中下侧水平轴表示水平视场,上侧水平轴表示竖直视场。N代表鼻侧,T代表颞侧,U代表上侧,D代表下侧。垂直的短线代表该点的标准差。

    Figure 3.  Peripheral relative refractions at different visual field angles. The lower and upper horizontal axes represent horizontal and vertical visual field of view respectively. N, T, U, D represents nasal, temporal, superior and inferior visual field of view respectively. The vertical bar represents the standard deviation at that point.

    表  1  Navarro眼模型结构参数

    Table  1.   Parameters of the Navarro eye model

    人眼位置/mm半径/mm折射率非球面系数
    角膜07.721.367−0.26
    0.556.51.337 40
    晶状体3.610.21.42−3.131 6
    7.6−61.336−1
    视网膜24−12.5
    下载: 导出CSV

    表  2  光学区,转换区和边缘区的平均分区口径、各区曲面曲率半径及分区平均圆心坐标

    Table  2.   The average zone diameter, radius of curvature and average center coordinates of the optical zone, the transition zone and the peripheral zone (mm)

    光学区转换区边缘区
    分区口径1.90±0.276.56±0.38>6.56
    曲率半径8.32±0.387.48±0.5510.49±1.83
    圆心坐标Xo0.01±0.050.14±0.14−0.80±11.14
    Yo8.38±0.507.61±0.469.39±2.06
    下载: 导出CSV

    表  3  水平和竖直方向上的光学区、转换区及边缘区平均分区口径及各区曲面的曲率半径

    Table  3.   Zone diameter and curvature radius of the optical zone, the transition zone and the peripheral zone in the horizontal and vertical directions (mm)

    光学区转换区边缘区
    水平方向分区口径0.95±0.143.40±0.42>3.40
    曲率半径8.47±0.307.67±0.3310.67±1.25
    竖直方向分区口径0.92±0.133.41±0.39>3.41
    曲率半径8.15±0.287.56±0.7311.00±1.58
    下载: 导出CSV

    表  4  鼻侧、颞侧、上侧和下侧角膜光学区、转换区及边缘的分区口径及曲率半径

    Table  4.   Zone diameter and curvature radius of the optical zone, the transition zone and the peripheral zone of the nasal,temporal,lower and upper cornea areas (mm)

    光学区转换区边缘区
    鼻侧分区口径0.94±0.143.41±0.42>3.41
    曲率半径8.51±0.317.17±0.3410.24±1.41
    颞侧分区口径0.95±0.153.39±0.41>3.39
    曲率半径8.42±0.277.62±0.3311.11±1.14
    上侧分区口径0.93±0.143.40±0.40>3.40
    曲率半径8.13±0.487.72±0.7610.59±1.27
    下侧分区口径0.92±0.133.42±0.38>3.42
    曲率半径8.18±0.167.40±0.7011.01±1.85
    下载: 导出CSV
  • [1] SWARBRICK H A. Orthokeratology review and update[J]. Clinical and Experimental Optometry, 2006, 89(3): 124-143. doi: 10.1111/j.1444-0938.2006.00044.x
    [2] KOFFLER B H, SEARS J J. Myopia control in children through refractive therapy gas permeable contact lenses: is it for real?[J]. American Journal of Ophthalmology, 2013, 156(6): 1076-1081. doi: 10.1016/j.ajo.2013.04.039
    [3] CHO P, CHEUNG S W and EDWARDS M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control[J]. Current Eye Research, 2005, 30(1): 71-80.
    [4] WALLINE J J, JONES L A, SINNOTT L T. Corneal reshaping and myopia progression[J]. British Journal of Ophthalmology, 2009, 93(9): 1181-1185. doi: 10.1136/bjo.2008.151365
    [5] VERKICHARLA P K, SUHEIMAT M, SCHMID K L, et al. Peripheral refraction, peripheral eye length, and retinal shape in myopia[J]. Optometry and Vision Science, 2016, 93(9): 1072-1078. doi: 10.1097/OPX.0000000000000905
    [6] 李前, 何书喜. 周边屈光对近视的影响[J]. 国际眼科杂志,2013,13(9):1795-1798. doi: 10.3980/j.issn.1672-5123.2013.09.16

    LI Q, HE SH X. Influence of peripheral refraction on myopia[J]. International Eye Science, 2013, 13(9): 1795-1798. (in Chinese) doi: 10.3980/j.issn.1672-5123.2013.09.16
    [7] ENDL M J, MARTINEZ C E, KLYCE S D, et al. Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy[J]. Archives of Ophthalmology, 2001, 119(8): 1159-1164. doi: 10.1001/archopht.119.8.1159
    [8] QUEIRÓS A, GONZÁLEZ-MÉIJOME J M, VILLA-COLLAR C, et al. Local steepening in peripheral corneal curvature after corneal refractive therapy and LASIK[J]. Optometry and Vision Science, 2010, 87(6): 432-439.
    [9] REINSTEIN D Z, GOBBE M, ARCHER T J, et al. Epithelial, stromal, and corneal pachymetry changes during orthokeratology[J]. Optometry and Vision Science, 2009, 86(8): E1006-E1014. doi: 10.1097/OPX.0b013e3181b18219
    [10] ALHARBI A, SWARBRICK H A. The effects of overnight orthokeratology lens wear on corneal thickness[J]. Investigative Ophthalmology &Visual Science, 2003, 44(6): 2518-2523.
    [11] 吕帆. 角膜塑形镜在控制近视进展中的作用[J]. 中国眼镜科技杂志,2018(21):92-93. doi: 10.3969/j.issn.1004-6615.2018.21.043

    LU F. The role of keratoplasty in controlling the progression of myopia[J]. China Glasses Science-Technology Magazine, 2018(21): 92-93. (in Chinese) doi: 10.3969/j.issn.1004-6615.2018.21.043
    [12] FARIA-RIBEIRO M, BELSUE R N, LÓPEZ-GIL N. Morphology, topography, and optics of the orthokeratology cornea[J]. Journal of Biomedical Optics, 2016, 21(7): 075011. doi: 10.1117/1.JBO.21.7.075011
    [13] LU F H, SIMPSON T, SORBARA L, et al. The relationship between the treatment zone diameter and visual, optical and subjective performance in corneal refractive therapyTM lens wearers[J]. Ophthalmic and Physiological Optics, 2007, 27(6): 568-578. doi: 10.1111/j.1475-1313.2007.00520.x
    [14] ZHONG Y Y, CHEN ZH, XUE F, et al. Corneal power change is predictive of myopia progression in orthokeratology[J]. Optometry and Vision Science, 2014, 91(4): 404-411. doi: 10.1097/OPX.0000000000000183
    [15] 张玉轩, 吴佳泽, 郑昌文. 基于Navarro示意眼模型的视觉真实感绘制[J]. 计算机应用研究,2011,28(8):3124-3127, 3130. doi: 10.3969/j.issn.1001-3695.2011.08.090

    ZHANG Y X, WU J Z, ZHENG CH W. Schematic eye model-based vision-realistic rendering[J]. Application Research of Computers, 2011, 28(8): 3124-3127, 3130. (in Chinese) doi: 10.3969/j.issn.1001-3695.2011.08.090
    [16] 陈浩, 宣丽, 胡立发, 等. 望远镜的紧凑型闭环液晶自适应光学系统设计[J]. 液晶与显示,2010,25(3):379-385. doi: 10.3969/j.issn.1007-2780.2010.03.017

    CHEN H, XUAN L, HU L F, et al. Design on compact type closed-loop liquid crystal adaptive optical system for telescope[J]. Chinese Journal of Liquid Crystals and Displays, 2010, 25(3): 379-385. (in Chinese) doi: 10.3969/j.issn.1007-2780.2010.03.017
    [17] 孔梅梅, 高志山, 陈磊, 等. 基于人眼光学模型建立的角膜模型[J]. 光学 精密工程,2009,17(4):707-712.

    KONG M M, GAO ZH SH, CHEN L, et al. Corneal model based on human eye optical models[J]. Optics and Precision Engineering, 2009, 17(4): 707-712. (in Chinese)
    [18] 周峰, 闫海, 王晓莉, 等. 基于ZEMAX用户自定义操作数的波前编码成像系统优化设计[J]. 光学 精密工程,2010,18(3):528-535.

    ZHOU F, YAN H, WANG X L, et al. Optimization of wavefront coding imaging systems based on ZEMAX user defined operands[J]. Optics and Precision Engineering, 2010, 18(3): 528-535. (in Chinese)
    [19] 李鹏飞, 许金凯, 胡立发, 等. 人眼像差校正仪成像CCD随动控制的设计与实现[J]. 液晶与显示,2010,25(5):733-737. doi: 10.3969/j.issn.1007-2780.2010.05.026

    LI P F, XU J K, HU L F, et al. Design and realization of focus auto adjustment for imaging CCD in retinal aberration correction setup[J]. Chinese Journal of Liquid Crystals and Displays, 2010, 25(5): 733-737. (in Chinese) doi: 10.3969/j.issn.1007-2780.2010.05.026
    [20] 曹正林, 廖文和, 沈建新. Zernike多项式拟合人眼波前像差的一种新算法[J]. 光学 精密工程,2006,14(2):308-314.

    CAO ZH L, LIAO W H, SHEN J X. A new algorithm for human eye's wave-front aberration fitting with Zernike polynomial[J]. Optics and Precision Engineering, 2006, 14(2): 308-314. (in Chinese)
    [21] 王红波, 孙凤仙, 王敏婷. 降低远视离焦对儿童近视发展的影响[J]. 中国斜视与小儿眼科杂志,2014,22(2):22-24.

    WANG H B, SUN F X, WANG M T. Clinical study of reducing hyperopic optical defocus on children's development of myopia[J]. Chinese Journal of Strabismus &Pediatric Ophthalmology, 2014, 22(2): 22-24. (in Chinese)
    [22] 高稳生, 陈子林. 角膜塑形术在近视治疗中的作用机制[J]. 中国医药科学,2015,5(1):60-62.

    GAO W SH, CHEN Z L. The action mechanism of orthokeratology in the treatment of myopia[J]. China Medicine and Pharmacy, 2015, 5(1): 60-62. (in Chinese)
    [23] 陈明璿, 陈柏儒, 林怡欣. 基于液晶透镜的电控式光学影像缩放系统[J]. 液晶与显示,2015,30(3):375-380. doi: 10.3788/YJYXS20153003.0375

    CHEN M R, CHEN B R, LIN Y X. Electrically tunable optical zoom system based on liquid crystal lenses[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(3): 375-380. (in Chinese) doi: 10.3788/YJYXS20153003.0375
    [24] 余鑫鑫, 李大禹, 夏明亮, 等. 基于液体变焦透镜离焦补偿机构的设计[J]. 液晶与显示,2013,28(3):344-348. doi: 10.3788/YJYXS20132803.0344

    YU X X, LI D Y, XIA M L, et al. Design of defocus compensate mechanism based on liquid lens[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 344-348. (in Chinese) doi: 10.3788/YJYXS20132803.0344
    [25] 黄德天, 刘雪超, 张红胜, 等. 基于人类视觉的快速自动调焦法[J]. 液晶与显示,2014,29(5):768-776. doi: 10.3788/YJYXS20142905.0768

    HUANG D T, LIU X CH, ZHANG H SH, et al. Fast auto-focusing method based on human visual system[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(5): 768-776. (in Chinese) doi: 10.3788/YJYXS20142905.0768
    [26] 周珺, 王肖, 吴晓璇, 等. 夜戴型角膜塑形镜矫正青少年近视疗效及其影响因素分析[J]. 中国实用眼科杂志,2017,35(2):136-142. doi: 10.3760/cma.j.issn.1006-4443.2017.02.009

    ZHOU J, WANG X, WU X X, et al. Clinic effect and relevant influencing factors of overninght orthokeratology in myopic adolescent[J]. Chinese Journal of Practical Ophthalmology, 2017, 35(2): 136-142. (in Chinese) doi: 10.3760/cma.j.issn.1006-4443.2017.02.009
    [27] QUEIRÓS A, GONZÁLEZ-MÉIJOME J M, JORGE J, et al. Peripheral refraction in myopic patients after orthokeratology[J]. Optometry and Vision Science, 2010, 87(5): 323-329.
    [28] MATHUR A, ATCHISON D A. Effect of orthokeratology on peripheral aberrations of the eye[J]. Optometry and Vision Science, 2009, 86(5): E476-E484. doi: 10.1097/OPX.0b013e31819fa5aa
    [29] SANKARIDURG P, HOLDEN B, SMITH Ⅲ E, et al. Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results[J]. Investigative Ophthalmology &Visual Science, 2011, 52(13): 9362-9367.
    [30] 陈志, 瞿小妹, 周行涛. 角膜塑形镜对周边屈光度的影响及其作用机制[J]. 中华眼视光学与视觉科学杂志,2012,14(2):74-78. doi: 10.3760/cma.j.issn.1674-845X.2012.02.003

    CHEN ZH, QU X M, ZHOU X T. Effects of orthokeratology on peripheral refraction and its mechanism[J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2012, 14(2): 74-78. (in Chinese) doi: 10.3760/cma.j.issn.1674-845X.2012.02.003
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1808
  • HTML全文浏览量:  644
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-01-21
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回