留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The effects of metallic contacts on the lasing characteristics of organic thin films

HAO Ya-ru DENG Zhao-qi

郝亚茹, 邓招奇. 金属接触对有机薄膜激光特性的影响[J]. 中国光学(中英文), 2020, 13(4): 866-872. doi: 10.37188/CO.2020-0007
引用本文: 郝亚茹, 邓招奇. 金属接触对有机薄膜激光特性的影响[J]. 中国光学(中英文), 2020, 13(4): 866-872. doi: 10.37188/CO.2020-0007
HAO Ya-ru, DENG Zhao-qi. The effects of metallic contacts on the lasing characteristics of organic thin films[J]. Chinese Optics, 2020, 13(4): 866-872. doi: 10.37188/CO.2020-0007
Citation: HAO Ya-ru, DENG Zhao-qi. The effects of metallic contacts on the lasing characteristics of organic thin films[J]. Chinese Optics, 2020, 13(4): 866-872. doi: 10.37188/CO.2020-0007

金属接触对有机薄膜激光特性的影响

详细信息
  • 中图分类号: O439

The effects of metallic contacts on the lasing characteristics of organic thin films

doi: 10.37188/CO.2020-0007
Funds: Supported by National Natural Science Foundation of China (No.61605083); Major Projects in Zhongshan City (No.2017B1023)
More Information
    Author Bio:

    Yaoru Hao was born in Shijiazhuang, Hebei, in 1981. She received a Ph.D. degree in optics engineering in 2009 in the Changchun Institute of Optics, Fine Mechanics and Physics, Jilin, China. Her official title is Lecturer. Her research interests are in applied optics and computer simulation. E-mail:fengyunxiaohao@foxmail.com

    Zhaoqi Deng was born in Yixing, Jiangsu, in 1981. He received an M.Sc. degree in optics engineering in 2007 in the Changchun Institute of Optics, Fine Mechanics and Physics, Jilin, China. His title is Lecturer. His research interests are in applied optics and computer simulation. E-mail: yeyunxiaopan@foxmail.com

    Corresponding author: yeyunxiaopan@foxmail.com
  • 摘要: 金属触点引起的光学损耗被认为是阻碍电泵浦有机激光器发展的主要障碍。本文对于存在金属接触电极的有机薄膜,通过设计适当的分布反馈结构形成多通道发射和表面等离子体激元(SPs),从而实现光泵浦激光。与采用无金属接触电极的有机薄膜进行对比,结果表明,本文方法可实现更好的激光性能。利用本文设计的结构,在740 nm光栅结构的Ag衬底上实现了(0.026 mJ/pulse)的激光发射。由于本文设计方法没有增加器件厚度,所以当光学性能得到改善时,电性能并没有降低。

     

  • Figure 1.  The grating structure scanned with an atomic force microscope

    Figure 2.  Absorption and photoluminescence spectra of the DCJTI:PVK film

    Figure 3.  Emission spectra of DCJTI:PVK system pumped with an optically pulsed laser at above the lasing threshold. The inset shows the photograph of the far-field pattern.

    Figure 4.  Output emission intensity integrated over all wavelengths as a function of the pump intensity for metal-free device (circles); DCJTI:PVK films with quartz substrate and Al-backed device (stars); DCJTI:PVK films with a grating period of 740 nm. The inset shows the grating coupling processes between the waveguide mode and lasing emission under the fourth Bragg condition

    Figure 5.  Output emission intensity integrated over all wavelengths as a function of the pump intensity for metal-free device (rectangles); DCJTI:PVK films with quartz substrate, Al-backed device (triangles); DCJTI:PVK films and Ag-backed device (stars); DCJTI:PVK films with a grating period of 740 nm. The inset shows the exiting and coupling processes between the lasing light and the SPs mode

    Figure 6.  Simulations for the excited SPs intensity from the DCJTI:PVK DFB laser with Ag layer thickness of 30 nm

    Table  1.   ASE characteristics of DCJTI:PVK films with quartz substrate and lasing characteristics of distributed feedback lasers (gain material DCJTI:PVK) with grating period of 400 nm and 740 nm.

    Metal layerPeriod /nmThreshold /(mJ·pulse−1)Wavelength /nmFWHM /nm
    (none)(flat substrate)0.05763512.4
    Al(flat substrate)0.3763211.8
    Ag(flat substrate)0.4163212.1
    (none)4000.036410.13
    Al4000.136370.15
    Ag4000.166400.23
    (none)7400.066130.32
    Al7400.0676120.25
    Ag7400.0266150.37
    下载: 导出CSV
  • [1] QIAN SH X, SNOW J B, TZENG H M, et al. Lasing droplets: highlighting the liquid-air interface by laser emission[J]. Science, 1986, 231(4737): 486-488. doi: 10.1126/science.231.4737.486
    [2] KALLINGER C, HILMER M, HAUGENEDER A, et al. A flexible conjugated polymer laser[J]. Advanced Materials, 1998, 10(12): 920-923. doi: 10.1002/(SICI)1521-4095(199808)10:12<920::AID-ADMA920>3.0.CO;2-7
    [3] FROLOV S V, VARDENY Z V, YOSHINO K. Cooperative and stimulated emission in poly (p-phenylene-vinylene) thin films and solutions[J]. Physical Review B, 1998, 57(15): 9141-9147. doi: 10.1103/PhysRevB.57.9141
    [4] ZHANG L, YANG Y, GAO J CH, et al. Study on Amplified Spontaneous Emission Properties of En BOD material[J]. Chinese Journal of Luminescence, 2015, 36(6): 661-665. (in Chinese) doi: 10.3788/fgxb20153606.0661
    [5] GROSSMANN T, WIENHOLD T, BOG U, et al. Polymeric photonic molecule super-mode lasers on silicon[J]. Light:Science &Applications, 2013, 2(5): e82.
    [6] ZHANG L, LI Y T, LIN J, et al. Microcavity lasing at 650 nm from Alq∶DCJTI film under optical pumping[J]. Chinese Journal of Luminescence, 2015, 36(9): 1059-1063. (in Chinese) doi: 10.3788/fgxb20153609.1059
    [7] CHEN SH M, LI K F, LI G X, et al. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect[J]. Light:Science &Applications, 2019, 8(1): 17.
    [8] FU D X, ZHENG L N, LIU J H, et al. Quantitative analysis of silver nanoparticles in single cell by laser ablation inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1390-1394. (in Chinese)
    [9] SUN L X, WANG W, TIAN X Y, et al. Progress in research and application of micro-laser-induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2018, 46(10): 1518-1527. (in Chinese) doi: 10.11895/j.issn.0253-3820.181150
    [10] LETOKHOV V S. Laser biology and medicine[J]. Nature, 1985, 316(6026): 325-330. doi: 10.1038/316325a0
    [11] MOUROU G A, BARTY C P, PERRY M D. Ultrahigh-intensity laser: physics of the extreme on a tabletop[R]. Washington, DC: Lawrence Livermore National Lab, 1997.
    [12] BRANCALEON L, MOSELEY H. Laser and non-laser light sources for photodynamic therapy[J]. Lasers in Medical Science, 2002, 17(3): 173-186. doi: 10.1007/s101030200027
    [13] RAO G F, HUANG L, LIU M H, et al. Discrimination of microbe species by laser induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1122-1128. (in Chinese) doi: 10.11895/j.issn.0253-3820.171448
    [14] YU J J, LIU P, ZENG ZH, et al. Development and characterization of a linear matrix-assisted laser desorption ionization mass spectrometer[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 463-470. (in Chinese) doi: 10.1016/S1872-2040(17)61077-6
    [15] DENG W CH, HAN G B, LI Y F, et al. Distinction of cells infected with respiratory syncytial virus by matrix assisted laser desorption/ionization mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(2): 165-169. (in Chinese) doi: 10.11895/j.issn.0253-3820.171011
    [16] KOZLOV V G, BULOVIĆ V, BURROWS P E, et al. Laser action in organic semiconductor waveguide and double-heterostructure devices[J]. Nature, 1997, 389(6649): 362-364. doi: 10.1038/38693
    [17] LI Y T, TIAN Y B, LIU X Y. Key techniques in electrically pumped organic semiconductor laser[J]. Chinese Journal of Luminescence, 2009, 30(3): 414-416. (in Chinese)
    [18] ANDREW P, TURNBULL G A, SAMUEL I D W, et al. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser[J]. Applied Physics Letters, 2002, 81(6): 954-956. doi: 10.1063/1.1496497
    [19] REUFER M, RIECHEL S, LUPTON J M, et al. Low-threshold polymeric distributed feedback lasers with metallic contacts[J]. Applied Physics Letters, 2004, 84(17): 3262-3264. doi: 10.1063/1.1712029
    [20] GIFFORD D K, HALL D G. Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling[J]. Applied Physics Letters, 2002, 81(23): 4315-4317. doi: 10.1063/1.1525882
    [21] FENG J, OKAMOTO T, KAWATA S. Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling[J]. Optics Letters, 2005, 30(17): 2302-2304. doi: 10.1364/OL.30.002302
    [22] BRUECK S R J, DIADIUK V, JONES T, et al. Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves[J]. Applied Physics Letters, 1985, 46(10): 915-917. doi: 10.1063/1.95819
    [23] JIANG L Y, YIN T T, DUBROVKIN A M, et al. In-plane coherent control of plasmon resonances for plasmonic switching and encoding[J]. Light:Science &Applications, 2019, 8(1): 21.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1729
  • HTML全文浏览量:  423
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-10
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回