留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光刻写低温度灵敏度的细芯长周期光栅

明昕宇 国旗 薛兆康 潘学鹏 陈超 于永森

明昕宇, 国旗, 薛兆康, 潘学鹏, 陈超, 于永森. 飞秒激光刻写低温度灵敏度的细芯长周期光栅[J]. 中国光学(中英文), 2020, 13(4): 737-744. doi: 10.37188/CO.2020-0015
引用本文: 明昕宇, 国旗, 薛兆康, 潘学鹏, 陈超, 于永森. 飞秒激光刻写低温度灵敏度的细芯长周期光栅[J]. 中国光学(中英文), 2020, 13(4): 737-744. doi: 10.37188/CO.2020-0015
MING Xin-yu, GUO Qi, XUE Zhao-kang, PAN Xue-peng, CHEN Chao, YU Yong-sen. A femtosecond laser-inscribed fine-core long-period grating with low temperature sensitivity[J]. Chinese Optics, 2020, 13(4): 737-744. doi: 10.37188/CO.2020-0015
Citation: MING Xin-yu, GUO Qi, XUE Zhao-kang, PAN Xue-peng, CHEN Chao, YU Yong-sen. A femtosecond laser-inscribed fine-core long-period grating with low temperature sensitivity[J]. Chinese Optics, 2020, 13(4): 737-744. doi: 10.37188/CO.2020-0015

飞秒激光刻写低温度灵敏度的细芯长周期光栅

基金项目: 国家自然科学基金项目(No.91860140,No.618741119);吉林省科技发展规划项目(No.20180201014GX)
详细信息
    作者简介:

    明昕宇(1994—),男,黑龙江佳木斯人,硕士研究生,2013年于吉林大学获得学士学位,现为吉林大学电子科学与工程学院硕士研究生,主要从事光纤传感方面的研究。E-mail:519113175@qq.com

    于永森(1974—),男,吉林长春人,教授,博士生导师,2005年于吉林大学获得博士学位,现为吉林大学电子科学与工程学院教授,主要从事光纤传感,激光微纳加工研究。E-mail:yuys@jlu.edu.cn

  • 中图分类号: TN253

A femtosecond laser-inscribed fine-core long-period grating with low temperature sensitivity

Funds: Supported by National Natural Science Foundation of China (No.91860140,No.618741119); Technology Development Project of Jilin Province (No.20180201014GX)
More Information
    Corresponding author: yuys@jlu.edu.cn
  • 摘要: 在折射率与应变测试时,为了降低温度影响所引起的串扰,对细芯长周期光纤光栅的温度、折射率和应变响应特性进行了研究。通过飞秒激光直写方法在纤芯直径为6 μm的单模光纤上成功制备了周期为50 μm的长周期光纤光栅。结果表明:在细芯光纤中以低激光能量加工的长周期光纤光栅具有较低的温度灵敏度,同时保持较大的消光比和较好的光谱质量。这种细芯长周期光纤光栅损耗峰在20~700 °C温度范围内仅漂移1.7 nm。该光栅对折射率变化也具有较好的响应,环境折射率在1.4065~1.4265时,灵敏度最高可达882.51 nm/RIU,应变灵敏度为−2.2 pm/με。这种细芯长周期光纤光栅可以较好地降低折射率与应变测试中由于温度影响带来的串扰。

     

  • 图 1  飞秒激光直写LPG的实验装置示意图

    Figure 1.  Schematic of experimental device for femtosecond laser direct writing LPG

    图 2  LPG的CCD照片与光纤横截面显微镜照片

    Figure 2.  CCD photo of LPG and fiber cross section microscope photo

    图 3  FC-LPG透射光谱

    Figure 3.  FC-LPG transmission spectrum

    图 4  退火过程谐振波长随温度变化曲线

    Figure 4.  Relationship between resonance wavelength and temperature during annealing

    图 5  退火前后透射峰对比图

    Figure 5.  Comparison of transmission peaks before and after annealing

    图 6  退火后谐振波长随温度变化曲线

    Figure 6.  Resonance wavelength varying with temperature after annealing

    图 7  不同纤芯直径的单模光纤光栅透射谱对比

    Figure 7.  Comparison of transmission spectra of single-mode fiber gratings with different core diameters

    图 8  纤芯直径为9 μm的光纤中刻写的LPG的温度响应测试

    Figure 8.  Temperature response test of LPG written in optical fiber with a core diameter of 9 μm

    图 9  透射峰随折射率变化灵敏度曲线以及波长漂移曲线

    Figure 9.  Refractive index response curve and sensitivity curve

    图 10  谐振波长与应变拟合曲线以及光谱漂移曲线

    Figure 10.  Resonance wavelength and strain fitting curve and spectral drift curve

  • [1] GUO Q, YU Y S, ZHENG ZH M, et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing[J]. IEEE Transactions on Nanotechnology, 2019, 18: 208-211. doi: 10.1109/TNANO.2018.2888536
    [2] BROADWAY C, KINET D, THEODOSIOU A, et al. CYTOP fibre Bragg grating sensors for harsh radiation environments[J]. Sensors, 2019, 19(13): 2853. doi: 10.3390/s19132853
    [3] BLANCHET T, DESMARCHELIER R, MORANA A, et al. Radiation and high temperature effects on regenerated fiber Bragg grating[J]. Journal of Lightwave Technology, 2019, 37(18): 4763-4769. doi: 10.1109/JLT.2019.2919761
    [4] DÍAZ C A R, LEAL-JUNIOR A, MARQUES C, et al. Optical fiber sensing for sub-millimeter liquid-level monitoring: a review[J]. IEEE Sensors Journal, 2019, 19(17): 7179-7191. doi: 10.1109/JSEN.2019.2915031
    [5] YANG SH, HOMA D, HEYL H, et al. Application of sapphire-fiber-Bragg-grating-based multi-point temperature sensor in boilers at a commercial power plant[J]. Sensors, 2019, 19(14): 3211. doi: 10.3390/s19143211
    [6] LI R Y, CHEN Y Y, TAN Y G, et al. Sensitivity enhancement of FBG-based strain sensor[J]. Sensors, 2018, 18(5): 1607. doi: 10.3390/s18051607
    [7] 石胜辉, 赵明富, 罗彬彬, 等. 扭转螺旋型力学微弯长周期光纤光栅的光谱特性[J]. 光学精密工程,2017,25(7):1771-1776.

    SHI SH H, ZHAO M F, LUO B B, et al. Spectral characteristics of helicoidal mechanically-induced long-period fiber grating[J]. Optics and Precision Engineering, 2017, 25(7): 1771-1776. (in Chinese)
    [8] 吴晶, 吴晗平, 黄俊斌, 等. 用于船舶结构监测的大量程光纤布拉格光栅应变传感器[J]. 光学精密工程,2014,22(2):311-317. doi: 10.3788/OPE.20142202.0311

    WU J, WU H P, HUANG J B, et al. Large range FBG sensor for ship structure health monitoring[J]. Optics and Precision Engineering, 2014, 22(2): 311-317. (in Chinese) doi: 10.3788/OPE.20142202.0311
    [9] 侯尚林, 葛伟青, 刘延君, 等. 非均匀光子晶体光纤光栅慢光的研究[J]. 发光学报,2014,35(9):1138-1142. doi: 10.3788/fgxb20143509.1138

    HOU SH L, GE W Q, LIU Y J, et al. Investigation on slow light in nonuniform photonic crystal fiber gratings[J]. Chinese Journal of Luminescence, 2014, 35(9): 1138-1142. (in Chinese) doi: 10.3788/fgxb20143509.1138
    [10] 张正义. 基于光纤光栅的一体式靶式流量传感技术[J]. 发光学报,2020,41(2):217-223.

    ZHANG ZH Y. One-piece flow target type based on fiber Bragg grating sensing technology[J]. Chinese Journal of Luminescence, 2020, 41(2): 217-223. (in Chinese)
    [11] 翟玉峰, 张龙, 朱灵, 等. 光纤光栅称重传感器研究[J]. 发光学报,2007,28(3):412-415. doi: 10.3321/j.issn:1000-7032.2007.03.024

    ZHAI Y F, ZHANG L, ZHU L, et al. Novel weigh sensors based on fiber Bragg grating sensing technology[J]. Chinese Journal of Luminescence, 2007, 28(3): 412-415. (in Chinese) doi: 10.3321/j.issn:1000-7032.2007.03.024
    [12] MARTIN-VELA J A, SIERRA-HERNANDEZ J M, MARTINEZ-RIOS A, et al. Curvature sensing setup based on a fiber laser and a long-period fiber grating[J]. IEEE Photonics Technology Letters, 2019, 31(15): 1265-1268. doi: 10.1109/LPT.2019.2924847
    [13] DEHGHANI S M, ESMAILZADEH N F, BAHRAMPOUR A, et al. A proposal for distributed humidity sensor based on the induced LPFG in a periodic polymer coated fiber structure[J]. Optics &Laser Technology, 2019, 117: 126-133.
    [14] LIU W L, SUN C T, GENG T, et al. A new spring-shaped long-period fiber grating with high strain sensitivity[J]. IEEE Photonics Technology Letters, 2019, 31(14): 1163-1166. doi: 10.1109/LPT.2019.2916409
    [15] CELEBANSKA A, CHINIFOROOSHAN Y, JANIK M, et al. Label-free cocaine aptasensor based on a long-period fiber grating[J]. Optics Letters, 2019, 44(10): 2482-2485. doi: 10.1364/OL.44.002482
    [16] 黄新成, 吴小文, 高社成, 等. 角向二阶少模长周期光纤光栅的扭转响应特性[J]. 中国激光,2019,46(12):1206001. doi: 10.3788/CJL201946.1206001

    HUANG X CH, WU X W, GAO SH CH, et al. Response characteristic of twisting second-azimuthal-order few-mode long-period fiber grating[J]. Chinese Journal of Lasers, 2019, 46(12): 1206001. (in Chinese) doi: 10.3788/CJL201946.1206001
    [17] WANG Y L, LIU Y Q, ZOU F, et al. Humidity sensor based on a long-period fiber grating coated with polymer composite film[J]. Sensors, 2019, 19(10): 2263. doi: 10.3390/s19102263
    [18] DOS SANTOS P S S, JORGE P A S, DE ALMEIDA J M M M, et al. Low-cost interrogation system for long-period fiber gratings applied to remote sensing[J]. Sensors, 2019, 19(7): 1500. doi: 10.3390/s19071500
    [19] 何万迅, 施文康, 叶爱伦, 等. 长周期光纤光栅及其在通信传感领域的新应用[J]. 光学精密工程,2001,9(2):104-108. doi: 10.3321/j.issn:1004-924X.2001.02.002

    HE W X, SHI W K, YE A L, et al. Long period fiber grating and its new applications in communication and sensing[J]. Optics and Precision Engineering, 2001, 9(2): 104-108. (in Chinese) doi: 10.3321/j.issn:1004-924X.2001.02.002
    [20] ZHENG ZH M, YU Y S, ZHANG X Y, et al. Femtosecond laser inscribed small-period long-period fiber gratings with dual-parameter sensing[J]. IEEE Sensors Journal, 2018, 18(3): 1100-1103. doi: 10.1109/JSEN.2017.2761794
    [21] 李薇, 侯睿, 张志俊. 准分布式FBG对应变和温度双参数分离测量的实现[J]. 中南民族大学学报(自然科学版),2017,36(4):84-87.

    LI W, HOU R, ZHANG ZH J. The implementation of two-parameter measurement of strain and temperature using quasi-distributed FBG[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2017, 36(4): 84-87. (in Chinese)
    [22] LIU H L, CHEN Y, CHEN L J, et al. Concentration and temperature sensing accurately in a concatenated FBG and LPG[J]. Optik, 2015, 126(6): 649-654. doi: 10.1016/j.ijleo.2015.01.015
    [23] 杜洋, 衣文索, 刘丹, 等. 基于3×3耦合器的光纤光栅温度传感器解调系统[J]. 长春理工大学学报(自然科学版),2019,42(2):17-21.

    DU Y, YI W S, LIU D, et al. Demodulation system of fiber Bragg grating temperature sensors based on 3×3 fiber coupler[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(2): 17-21. (in Chinese)
    [24] 吴倩, 张诸宇, 郭晓晨, 等. 基于光子晶体光纤交叉敏感分离的磁场温度传感研究[J]. 物理学报,2018,67(18):184212. doi: 10.7498/aps.67.20180680

    WU Q, ZHANG ZH Y, GUO X CH, et al. Simultaneous measurement of magnetic field and temperature based on photonic crystal field with eliminating cross-sensitivity[J]. Acta Physica Sinica, 2018, 67(18): 184212. (in Chinese) doi: 10.7498/aps.67.20180680
    [25] 李燕飞, 闫海涛, 鱼志云. 基于预应力的超低温漂光纤光栅封装技术实验研究[J]. 光学技术,2019,45(3):368-372.

    LI Y F, YAN H T, YU ZH Y. Experiential research of packaging technology for ultra-low-temperature drifted fiber Bragg grating based on pre-stress[J]. Optical Technique, 2019, 45(3): 368-372. (in Chinese)
    [26] YUAN W, STEFANI A, BANG O. Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of Dual-FBG temperature compensated polymer optical fiber strain sensors[J]. IEEE Photonics Technology Letters, 2012, 24(5): 401-403. doi: 10.1109/LPT.2011.2179927
    [27] LIU Q, CHIANG K S, LOR K P, et al. Condition for the realization of a temperature-insensitive long-period waveguide grating[J]. Optics Letters, 2006, 31(18): 2716-2718. doi: 10.1364/OL.31.002716
    [28] DANDAPAT K, TRIPATHI S M, CHINIFOOROSHAN Y, et al. Compact and cost-effective temperature-insensitive bio-sensor based on long-period fiber gratings for accurate detection of E. coli bacteria in water[J]. Optics Letters, 2016, 41(18): 4198-4201. doi: 10.1364/OL.41.004198
    [29] CHEN H J, WANG L, LIU W F, et al. Temperature-insensitive fiber Bragg grating tilt sensor[J]. Applied Optics, 2008, 47(4): 556-560. doi: 10.1364/AO.47.000556
    [30] GUO J C, YU Y S, XUE Y, et al. Compact long-period fiber gratings based on periodic microchannels[J]. IEEE Photonics Technology Letters, 2013, 25(2): 111-114. doi: 10.1109/LPT.2012.2227701
    [31] SUN B, WEI W, LIAO CH R, et al. Automatic arc discharge-induced helical long period fiber gratings and its sensing applications[J]. IEEE Photonics Technology Letters, 2017, 29(11): 873-876. doi: 10.1109/LPT.2017.2693361
    [32] ZHANG Y X, ZHANG W G, YAN T Y, et al. V-shaped long-period fiber grating high-sensitive bending vector sensor[J]. IEEE Photonics Technology Letters, 2018, 30(17): 1531-1534. doi: 10.1109/LPT.2018.2858555
    [33] 李燕, 徐迈, 王庆亚, 等. 紫外写入光纤光栅应变传感特性研究[J]. 发光学报,2000,21(1):61-63. doi: 10.3321/j.issn:1000-7032.2000.01.014

    LI Y, XU M, WANG Q Y, et al. Strain sensing properties of UV- written fiber grating[J]. Chinese Journal of Luminescence, 2000, 21(1): 61-63. (in Chinese) doi: 10.3321/j.issn:1000-7032.2000.01.014
    [34] 李燕, 梁国栋, 徐迈, 等. 利用相位掩膜技术制备光纤光栅的紫外曝光系统[J]. 发光学报,1996,17(3):266-268. doi: 10.3321/j.issn:1000-7032.1996.03.015

    LI Y, LIANG G D, XU M, et al. UV exposure equipment of fabricating fiber grating by a phase mask[J]. Chinese Journal of Luminescence, 1996, 17(3): 266-268. (in Chinese) doi: 10.3321/j.issn:1000-7032.1996.03.015
    [35] WU D, CHEN Q D, NIU L G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on A Chip, 2019, 9(16): 2391-2394.
    [36] XU B B, ZHANG Y L, XIA H, et al. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing[J]. Lab on A Chip, 2013, 13(9): 1677-1690. doi: 10.1039/c3lc50160d
    [37] YIN D, FENG J, MA R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nature Communications, 2016, 7(1): 11573. doi: 10.1038/ncomms11573
    [38] 杨日星, 欧启标. 长周期光纤光栅的温度特性研究[J]. 科技信息,2013(3):80-81, 96. doi: 10.3969/j.issn.1001-9960.2013.03.058

    YANG R X, OU Q B. Theoretical and experimental study on temperature characteristic of long-period fibre grating[J]. Science &Technology Information, 2013(3): 80-81, 96. (in Chinese) doi: 10.3969/j.issn.1001-9960.2013.03.058
  • 加载中
图(10)
计量
  • 文章访问数:  2499
  • HTML全文浏览量:  754
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-21
  • 修回日期:  2020-02-25
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回