[1] |
GUO Q, YU Y S, ZHENG ZH M, et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing[J]. IEEE Transactions on Nanotechnology, 2019, 18: 208-211. doi: 10.1109/TNANO.2018.2888536
|
[2] |
BROADWAY C, KINET D, THEODOSIOU A, et al. CYTOP fibre Bragg grating sensors for harsh radiation environments[J]. Sensors, 2019, 19(13): 2853. doi: 10.3390/s19132853
|
[3] |
BLANCHET T, DESMARCHELIER R, MORANA A, et al. Radiation and high temperature effects on regenerated fiber Bragg grating[J]. Journal of Lightwave Technology, 2019, 37(18): 4763-4769. doi: 10.1109/JLT.2019.2919761
|
[4] |
DÍAZ C A R, LEAL-JUNIOR A, MARQUES C, et al. Optical fiber sensing for sub-millimeter liquid-level monitoring: a review[J]. IEEE Sensors Journal, 2019, 19(17): 7179-7191. doi: 10.1109/JSEN.2019.2915031
|
[5] |
YANG SH, HOMA D, HEYL H, et al. Application of sapphire-fiber-Bragg-grating-based multi-point temperature sensor in boilers at a commercial power plant[J]. Sensors, 2019, 19(14): 3211. doi: 10.3390/s19143211
|
[6] |
LI R Y, CHEN Y Y, TAN Y G, et al. Sensitivity enhancement of FBG-based strain sensor[J]. Sensors, 2018, 18(5): 1607. doi: 10.3390/s18051607
|
[7] |
石胜辉, 赵明富, 罗彬彬, 等. 扭转螺旋型力学微弯长周期光纤光栅的光谱特性[J]. 光学精密工程,2017,25(7):1771-1776.SHI SH H, ZHAO M F, LUO B B, et al. Spectral characteristics of helicoidal mechanically-induced long-period fiber grating[J]. Optics and Precision Engineering, 2017, 25(7): 1771-1776. (in Chinese)
|
[8] |
吴晶, 吴晗平, 黄俊斌, 等. 用于船舶结构监测的大量程光纤布拉格光栅应变传感器[J]. 光学精密工程,2014,22(2):311-317. doi: 10.3788/OPE.20142202.0311WU J, WU H P, HUANG J B, et al. Large range FBG sensor for ship structure health monitoring[J]. Optics and Precision Engineering, 2014, 22(2): 311-317. (in Chinese) doi: 10.3788/OPE.20142202.0311
|
[9] |
侯尚林, 葛伟青, 刘延君, 等. 非均匀光子晶体光纤光栅慢光的研究[J]. 发光学报,2014,35(9):1138-1142. doi: 10.3788/fgxb20143509.1138HOU SH L, GE W Q, LIU Y J, et al. Investigation on slow light in nonuniform photonic crystal fiber gratings[J]. Chinese Journal of Luminescence, 2014, 35(9): 1138-1142. (in Chinese) doi: 10.3788/fgxb20143509.1138
|
[10] |
张正义. 基于光纤光栅的一体式靶式流量传感技术[J]. 发光学报,2020,41(2):217-223.ZHANG ZH Y. One-piece flow target type based on fiber Bragg grating sensing technology[J]. Chinese Journal of Luminescence, 2020, 41(2): 217-223. (in Chinese)
|
[11] |
翟玉峰, 张龙, 朱灵, 等. 光纤光栅称重传感器研究[J]. 发光学报,2007,28(3):412-415. doi: 10.3321/j.issn:1000-7032.2007.03.024ZHAI Y F, ZHANG L, ZHU L, et al. Novel weigh sensors based on fiber Bragg grating sensing technology[J]. Chinese Journal of Luminescence, 2007, 28(3): 412-415. (in Chinese) doi: 10.3321/j.issn:1000-7032.2007.03.024
|
[12] |
MARTIN-VELA J A, SIERRA-HERNANDEZ J M, MARTINEZ-RIOS A, et al. Curvature sensing setup based on a fiber laser and a long-period fiber grating[J]. IEEE Photonics Technology Letters, 2019, 31(15): 1265-1268. doi: 10.1109/LPT.2019.2924847
|
[13] |
DEHGHANI S M, ESMAILZADEH N F, BAHRAMPOUR A, et al. A proposal for distributed humidity sensor based on the induced LPFG in a periodic polymer coated fiber structure[J]. Optics &Laser Technology, 2019, 117: 126-133.
|
[14] |
LIU W L, SUN C T, GENG T, et al. A new spring-shaped long-period fiber grating with high strain sensitivity[J]. IEEE Photonics Technology Letters, 2019, 31(14): 1163-1166. doi: 10.1109/LPT.2019.2916409
|
[15] |
CELEBANSKA A, CHINIFOROOSHAN Y, JANIK M, et al. Label-free cocaine aptasensor based on a long-period fiber grating[J]. Optics Letters, 2019, 44(10): 2482-2485. doi: 10.1364/OL.44.002482
|
[16] |
黄新成, 吴小文, 高社成, 等. 角向二阶少模长周期光纤光栅的扭转响应特性[J]. 中国激光,2019,46(12):1206001. doi: 10.3788/CJL201946.1206001HUANG X CH, WU X W, GAO SH CH, et al. Response characteristic of twisting second-azimuthal-order few-mode long-period fiber grating[J]. Chinese Journal of Lasers, 2019, 46(12): 1206001. (in Chinese) doi: 10.3788/CJL201946.1206001
|
[17] |
WANG Y L, LIU Y Q, ZOU F, et al. Humidity sensor based on a long-period fiber grating coated with polymer composite film[J]. Sensors, 2019, 19(10): 2263. doi: 10.3390/s19102263
|
[18] |
DOS SANTOS P S S, JORGE P A S, DE ALMEIDA J M M M, et al. Low-cost interrogation system for long-period fiber gratings applied to remote sensing[J]. Sensors, 2019, 19(7): 1500. doi: 10.3390/s19071500
|
[19] |
何万迅, 施文康, 叶爱伦, 等. 长周期光纤光栅及其在通信传感领域的新应用[J]. 光学精密工程,2001,9(2):104-108. doi: 10.3321/j.issn:1004-924X.2001.02.002HE W X, SHI W K, YE A L, et al. Long period fiber grating and its new applications in communication and sensing[J]. Optics and Precision Engineering, 2001, 9(2): 104-108. (in Chinese) doi: 10.3321/j.issn:1004-924X.2001.02.002
|
[20] |
ZHENG ZH M, YU Y S, ZHANG X Y, et al. Femtosecond laser inscribed small-period long-period fiber gratings with dual-parameter sensing[J]. IEEE Sensors Journal, 2018, 18(3): 1100-1103. doi: 10.1109/JSEN.2017.2761794
|
[21] |
李薇, 侯睿, 张志俊. 准分布式FBG对应变和温度双参数分离测量的实现[J]. 中南民族大学学报(自然科学版),2017,36(4):84-87.LI W, HOU R, ZHANG ZH J. The implementation of two-parameter measurement of strain and temperature using quasi-distributed FBG[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2017, 36(4): 84-87. (in Chinese)
|
[22] |
LIU H L, CHEN Y, CHEN L J, et al. Concentration and temperature sensing accurately in a concatenated FBG and LPG[J]. Optik, 2015, 126(6): 649-654. doi: 10.1016/j.ijleo.2015.01.015
|
[23] |
杜洋, 衣文索, 刘丹, 等. 基于3×3耦合器的光纤光栅温度传感器解调系统[J]. 长春理工大学学报(自然科学版),2019,42(2):17-21.DU Y, YI W S, LIU D, et al. Demodulation system of fiber Bragg grating temperature sensors based on 3×3 fiber coupler[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(2): 17-21. (in Chinese)
|
[24] |
吴倩, 张诸宇, 郭晓晨, 等. 基于光子晶体光纤交叉敏感分离的磁场温度传感研究[J]. 物理学报,2018,67(18):184212. doi: 10.7498/aps.67.20180680WU Q, ZHANG ZH Y, GUO X CH, et al. Simultaneous measurement of magnetic field and temperature based on photonic crystal field with eliminating cross-sensitivity[J]. Acta Physica Sinica, 2018, 67(18): 184212. (in Chinese) doi: 10.7498/aps.67.20180680
|
[25] |
李燕飞, 闫海涛, 鱼志云. 基于预应力的超低温漂光纤光栅封装技术实验研究[J]. 光学技术,2019,45(3):368-372.LI Y F, YAN H T, YU ZH Y. Experiential research of packaging technology for ultra-low-temperature drifted fiber Bragg grating based on pre-stress[J]. Optical Technique, 2019, 45(3): 368-372. (in Chinese)
|
[26] |
YUAN W, STEFANI A, BANG O. Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of Dual-FBG temperature compensated polymer optical fiber strain sensors[J]. IEEE Photonics Technology Letters, 2012, 24(5): 401-403. doi: 10.1109/LPT.2011.2179927
|
[27] |
LIU Q, CHIANG K S, LOR K P, et al. Condition for the realization of a temperature-insensitive long-period waveguide grating[J]. Optics Letters, 2006, 31(18): 2716-2718. doi: 10.1364/OL.31.002716
|
[28] |
DANDAPAT K, TRIPATHI S M, CHINIFOOROSHAN Y, et al. Compact and cost-effective temperature-insensitive bio-sensor based on long-period fiber gratings for accurate detection of E. coli bacteria in water[J]. Optics Letters, 2016, 41(18): 4198-4201. doi: 10.1364/OL.41.004198
|
[29] |
CHEN H J, WANG L, LIU W F, et al. Temperature-insensitive fiber Bragg grating tilt sensor[J]. Applied Optics, 2008, 47(4): 556-560. doi: 10.1364/AO.47.000556
|
[30] |
GUO J C, YU Y S, XUE Y, et al. Compact long-period fiber gratings based on periodic microchannels[J]. IEEE Photonics Technology Letters, 2013, 25(2): 111-114. doi: 10.1109/LPT.2012.2227701
|
[31] |
SUN B, WEI W, LIAO CH R, et al. Automatic arc discharge-induced helical long period fiber gratings and its sensing applications[J]. IEEE Photonics Technology Letters, 2017, 29(11): 873-876. doi: 10.1109/LPT.2017.2693361
|
[32] |
ZHANG Y X, ZHANG W G, YAN T Y, et al. V-shaped long-period fiber grating high-sensitive bending vector sensor[J]. IEEE Photonics Technology Letters, 2018, 30(17): 1531-1534. doi: 10.1109/LPT.2018.2858555
|
[33] |
李燕, 徐迈, 王庆亚, 等. 紫外写入光纤光栅应变传感特性研究[J]. 发光学报,2000,21(1):61-63. doi: 10.3321/j.issn:1000-7032.2000.01.014LI Y, XU M, WANG Q Y, et al. Strain sensing properties of UV- written fiber grating[J]. Chinese Journal of Luminescence, 2000, 21(1): 61-63. (in Chinese) doi: 10.3321/j.issn:1000-7032.2000.01.014
|
[34] |
李燕, 梁国栋, 徐迈, 等. 利用相位掩膜技术制备光纤光栅的紫外曝光系统[J]. 发光学报,1996,17(3):266-268. doi: 10.3321/j.issn:1000-7032.1996.03.015LI Y, LIANG G D, XU M, et al. UV exposure equipment of fabricating fiber grating by a phase mask[J]. Chinese Journal of Luminescence, 1996, 17(3): 266-268. (in Chinese) doi: 10.3321/j.issn:1000-7032.1996.03.015
|
[35] |
WU D, CHEN Q D, NIU L G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on A Chip, 2019, 9(16): 2391-2394.
|
[36] |
XU B B, ZHANG Y L, XIA H, et al. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing[J]. Lab on A Chip, 2013, 13(9): 1677-1690. doi: 10.1039/c3lc50160d
|
[37] |
YIN D, FENG J, MA R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nature Communications, 2016, 7(1): 11573. doi: 10.1038/ncomms11573
|
[38] |
杨日星, 欧启标. 长周期光纤光栅的温度特性研究[J]. 科技信息,2013(3):80-81, 96. doi: 10.3969/j.issn.1001-9960.2013.03.058YANG R X, OU Q B. Theoretical and experimental study on temperature characteristic of long-period fibre grating[J]. Science &Technology Information, 2013(3): 80-81, 96. (in Chinese) doi: 10.3969/j.issn.1001-9960.2013.03.058
|