留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可见光通信中正交频分复用调制技术研究综述

徐宪莹 岳殿武

徐宪莹, 岳殿武. 可见光通信中正交频分复用调制技术研究综述[J]. 中国光学. doi: 10.37188/CO.2020-0051
引用本文: 徐宪莹, 岳殿武. 可见光通信中正交频分复用调制技术研究综述[J]. 中国光学. doi: 10.37188/CO.2020-0051
XU Xian-ying, YUE Dian-wu. Review of research on orthogonal frequency division multiplexing modulation techniques in visible light communication[J]. Chinese Optics. doi: 10.37188/CO.2020-0051
Citation: XU Xian-ying, YUE Dian-wu. Review of research on orthogonal frequency division multiplexing modulation techniques in visible light communication[J]. Chinese Optics. doi: 10.37188/CO.2020-0051

可见光通信中正交频分复用调制技术研究综述

doi: 10.37188/CO.2020-0051
基金项目: 国家自然科学基金(No. 61371091);大连海事大学研究生教育教学改革研究项目(No. YJG2019205)
详细信息
    作者简介:

    徐宪莹(1988—),女,山东莒县人,讲师,大连海事大学博士研究生,2011年、2014年于大连海事大学分别获得学士、硕士学位,主要从事可见光通信研究。E-mail:xuxianying@dlmu.edu.cn

    岳殿武(1966—),男,吉林四平人,博士,教授,博士生导师,1986年,1989年于南开大学分别获得学士、硕士学位,1996年于北京邮电大学获得博士学位,主要从事无线通信方面的研究。E-mail:dwyue@dlmu.edu.cn

  • 中图分类号: TN929.12

Review of research on orthogonal frequency division multiplexing modulation techniques in visible light communication

Funds: Supported by National Natural Science Foundation of China (No. 61371091); Research Project on Postgraduate Education and Teaching Reform of Dalian Maritime University (No. YJG2019205)
More Information
  • 摘要: 可见光通信(VLC)因由于可以弥补射频通信的不足,进而成为研究热点,正交频分复用(OFDM)技术因其高数据速率和抗频率选择性衰落被广泛应用在VLC中。本文从能量效率、频谱效率、误码率、计算复杂度等方面对可见光通信系统中OFDM调制技术进行研究和比较,主要包括基于离散傅立叶变换的单极性方案、改进或增强型方案和混合型方案,基于哈特莱变换的光OFDM,以及基于LED索引调制的光OFDM。文中介绍了多种光OFDM调制技术的工作原理综合对比了频谱效率等性能;研究了光OFDM系统接收机改进方案;总结了可见光OFDM系统存在的问题和未来研究方向。本文对可见光OFDM系统进行归纳和总结,为提出更加高效的单极化调制技术、进一步提高系统频谱效率及可靠性提供了参考。
  • 图  1  基于离散傅立叶变换的光OFDM系统框图

    Figure  1.  Block diagram of an optical OFDM system based on discrete Fourier transformation

    图  2  光OFDM系统BER=10−3时光功耗与频带利用率的关系

    Figure  2.  The relationship between optical power and spectral efficiency In the optical OFDM system under BER=10−3

    表  1  典型单极性光OFDM调制原理对比

    Table  1.   Comparison of modulation principles of typical optical OFDM

    典型单极性光OFDM频域子载波设置时域信号极性单极化处理
    DCO-OFDM[10]$ {X}_{k}={X}_{N-k}^{\ast },0<k<\dfrac{N}{2}$双极性实数添加直流偏置
    ACO-OFDM[11]${{\mathit{\boldsymbol{X}}} }=\left(0,{X}_{1},0,{X}_{3},\cdots,{X}_{\frac{N}{2}-1},0,{X}_{\frac{N}{2}-1}^{\ast },\cdots,{X}_{3}^{\ast },0,{X}_{1}^{\ast }\right)$双极性实数,具有特殊对称性:${x}_{n}=-{x}_{n+\frac{N}{2} }\left(0{\simfont\text{≤} } n < N/2\right)$负值限幅
    U-OFDM[12]$ {X}_{k}={X}_{N-k}^{\ast },0<k<\dfrac{N}{2}$双极性实数极性编码
    Flip-OFDM[13]$ {X}_{k}={X}_{N-k}^{\ast },0<k<\dfrac{N}{2}$双极性实数“正”、“负”模块分别传输
    PAM-DMT[14]$\begin{array}{l}{{\mathit{\boldsymbol{X}}} }=(0,{\rm{j} }{X}_{\rm{PAM},1},{\rm{j} }{X}_{\rm{PAM,2} },\cdots,{\rm{j} }{X}_{ { {\rm{PAM} } },\frac{N}{2}-1},0,\\-{\rm{j} }{X}_{ {\rm{PAM} },\frac{N}{2}-1},\cdots,-{\rm{j} }{X}_{\rm{PAM},2},-{\rm{j} }{X}_{\rm{PAM},1})\end{array}$双极性实数,具有特殊对称性:${x}_{N-n}=-{x}_{n},1{\simfont\text{≤} } n{\simfont\text{≤} } \dfrac{N}{2}-1$负值限幅
    MACO-OFDM[15]${{\mathit{\boldsymbol{X}}} }=\left(0,{X}_{1},0,{X}_{3},\cdots,{X}_{\frac{N}{2}-1},0,{X}_{\frac{N}{2}-1 }^{\ast },\cdots,{X}_{3}^{\ast },0,{X}_{1}^{\ast }\right)$双极性实数具有特殊对称性:${x}_{n}=-{x}_{n+\frac{N}{2} }\left(0{\simfont\text{≤} } n < \dfrac{N}{2}\right)$极性编码
    下载: 导出CSV

    表  2  光OFDM性能比较

    Table  2.   Performance comparison of optical OFDM schemes

    光OFDM频谱效率(bit·s−1·Hz−1功率效率接收机复杂度
    DCO-OFDM[10]$\displaystyle \frac{N-2}{2N}{\rm{log} }_{2}\; M$$ O\left(N{\rm{log}}_{2}\; N\right)$
    ACO-OFDM[11]$\displaystyle \frac{1}{4}{\rm{log} }_{2}\; M$$ O\left(N{\rm{log}}_{2}\; N\right)$
    U-OFDM[12]$\displaystyle \frac{N-2}{4N}{\rm{log} }_{2}\; M$$ O\left(N{\rm{log}}_{2}\; N\right)$
    Flip-OFDM[13]$\displaystyle \frac{N-2}{4N}{\rm{log} }_{2}\; M$$ O\left(N{\rm{log}}_{2}\; N\right)$
    PAM-DMT[14]$\displaystyle\frac{N-2}{2N}{\rm{log} }_{2}\; M$$ O\left(N{\rm{log}}_{2}\; N\right)$
    MACO-OFDM[15]$\displaystyle\frac{1}{8}{\rm{log} }_{2}\; M$$ O\left(N{\rm{log}}_{2}\; N\right)$
    eU-OFDM[16]$\left(1-\displaystyle\frac{1}{ {2}^{D} }\right)\displaystyle\frac{N-2}{2N}{\rm{log} }_{2}\; M$$ {O}\left[\left(2D-1\right)\left(N{\rm{log}}_{2}\; N\right)\right]$
    GREENER-OFDM[32]$\displaystyle\frac{N-2}{4N}{\displaystyle \sum _{d=1}^{D}\displaystyle\frac{ {\rm{log} }_{2}\; {M}_{d} }{ {2}^{d-1} } }$$ {O}\left[\left(2D-1\right)\left(N{\rm{log}}_{2}\; N\right)\right]$
    ePAM-DMT[33]$ {\displaystyle \sum _{d=1}^{D}\frac{\left(N-2d\right){\rm{log}}_{2}{M}_{d}}{{2}^{d}N}}$${O}\left({2\displaystyle \sum _{d=1}^{D}{N}_{d}{\rm{log} }_{2}{N}_{d} }-{N}_{D}{\rm{log} }_{2}{N}_{D}\right)$
    eACO-OFDM[34]$ {\displaystyle \sum _{d=1}^{D}\frac{{\rm{log}}_{2}{M}_{d}}{{2}^{d+1}}}$${ O }\left({\displaystyle \sum _{l=1}^{L}\displaystyle\frac{N}{ {2}^{l-2} } }{\rm{log} }_{2}\left(\displaystyle\frac{N}{ {2}^{l-1} }\right)-\displaystyle\frac{N}{ {2}^{L-1} }{\rm{log} }_{2}\left(\displaystyle\frac{N}{ {2}^{L-1} }\right)\right)$
    LACO-OFDM[17]$\left(\displaystyle\frac{1}{2}-\displaystyle\frac{1}{ {2}^{L+1} }\right){\rm{log} }_{2}\; M$${O}\left({\displaystyle \sum _{l=1}^{L}\displaystyle\frac{N}{ {2}^{l-2} } }{\rm{log} }_{2}\left(\displaystyle\frac{N}{ {2}^{l-1} }\right)-\displaystyle\frac{N}{ {2}^{L-1} }{\rm{log} }_{2}\left(\displaystyle\frac{N}{ {2}^{L-1} }\right)\right)$
    THO-OFDM[35]$\displaystyle\frac{1}{4}{\rm{log} }_{2}\; {M}_{\rm{ACO} }^{1}+\frac{1}{8}{\rm{log} }_{2}\; {M}_{\rm{ACO} }^{2}+\left(\frac{1}{8}-\frac{1}{N}\right){\rm{log} }_{2}\; {M}_{\rm{PAM} }$$\begin{array}{l}{\rm{TD} }:{O}\left[N\left({\rm{log} }_{2}N+{\rm{log} }_{2}\left(\displaystyle\frac{N}{2}\right)\right)\right]\\ {\rm{FD} }:{O}\left[N\left(3{\rm{log} }_{2}N+{\rm{log} }_{2}\left(\displaystyle\frac{N}{2}\right)\right)\right]\end{array}$
    ADO-OFDM[18]$\displaystyle \frac{1}{4}{\rm{log} }_{2}\; {M}_{\rm{ACO} }+\left(\frac{1}{4}-\frac{1}{N}\right){\rm{log} }_{2}\; {M}_{\rm{DCO} }$$ {O}\left(4N{\rm{log}}_{2}\; N\right)$
    HACO-OFDM[19]$\displaystyle \frac{1}{4}{\rm{log} }_{2}\; {M}_{\rm{ACO} }+\left(\frac{1}{4}-\frac{1}{N}\right){\rm{log} }_{2}\; {M}_{\rm{PAM} }$$ {O}\left(3N{\rm{log}}_{2}\; N\right)$
    EHACO-OFDM[20]$\displaystyle\frac{1}{4}{\rm{log} }_{2}\; {M}_{\rm{ACO} }+\left(\frac{1}{4}-\frac{1}{N}\right)\left({\rm{log} }_{2}\; {M}_{\rm{DCO} }+{\rm{log} }_{2}\; {M}_{\rm{PAM} }\right)$$ {O}\left(5N{\rm{log}}_{2}\; N\right)$
    AAO-OFDM[21]$\displaystyle\frac{1}{4}\left({\rm{log} }_{2}\; {M}_{\rm{AVO} }+{\rm{log} }_{2}\; {M}_{\rm{ACO} }\right)-\frac{1}{N}{\rm{log} }_{2}\; {M}_{\rm{AVO} }-\frac{1}{2}$$ {O}\left(4N{\rm{log}}_{2}\; N\right)$
    PM-OFDM[22]$\displaystyle\frac{1}{4}{\rm{log} }_{2}\; M$$ \begin{array}{l}{\rm{PM}}-1:{O}\left(N{\rm{log}}_{2}\; N\right)\\ {\rm{PM}}-2:{O}\left(9N{\rm{log}}_{2}\; N\right)\end{array}$
    P-OFDM[23]$\displaystyle \frac{1}{2}{\rm{log} }_{2}\; M$$ O\left(N{\rm{log}}_{2}\; N\right)$
    下载: 导出CSV

    表  3  基于FFT与FHT的光OFDM对比

    Table  3.   Comparison of optical OFDM with FFT and FHT

    FFT-OFDMFHT-OFDM
    定义式$\begin{array}{l}{\rm{FFT} }: X(k)={\displaystyle \sum _{n=0}^{N-1}x(n){\rm{exp} }\;\left(-{\rm{J}}\frac{2{\text{π}} nk}{N}\right)},0{\simfont\text{≤} } k{\simfont\text{≤} } N-1\\ {\rm{IFFT} }: x(n)={\displaystyle \sum _{k=0}^{N-1}X(k){\rm{exp} }\;\left({\rm{J}}\frac{2{\text{π}}nk}{N}\right)},0{\simfont\text{≤} } n{\simfont\text{≤} } N-1\end{array}$$\begin{array}{l}{\rm{FHT} }: X(k)={\displaystyle \sum _{n=0}^{N-1}x(n)}{\rm{cas} }\;(2{\text{π} } kn/N),0{\simfont\text{≤} } k{\simfont\text{≤} } N-1\\ {\rm{IFHT} }:x(n)={\displaystyle \sum _{k=0}^{N-1}X(k)}{\rm{cas} }(2{\text{π} } kn/N),0{\simfont\text{≤} } n{\simfont\text{≤} } N-1\\{\rm{cas} }(2{\text{π} }kn/N)={\rm{cos} }(2{\text{π} }kn/N)+{\rm{sin} }(2{\text{π} }kn/N)\end{array}$
    调制方式复星座(m-QAM)实星座(BPSK,M-PAM)
    星座尺寸m$ M=\sqrt{m}$
    厄米特对称需要不需要
    计算复杂度有复数计算附加共轭运算无复数计算无附加共轭运算
    有用载波N/2N
    下载: 导出CSV
  • [1] 杨秀清, 陈海燕. 光通信技术在物联网中的应用[J]. 中国光学,2014,7(6):889-896.

    YANG X Q, CHEN H Y. Application of optical communication technique in the internet of things[J]. Chinese Optics, 2014, 7(6): 889-896. (in Chinese)
    [2] 周青超, 柏泽龙, 鲁路, 等. 白光LED远程荧光粉技术研究进展与展望[J]. 中国光学,2015,8(3):313-328. doi: 10.3788/co.20150803.0313

    ZHOU Q CH, BAI Z L, LU L, et al. Remote phosphor technology for white LED applications: advances and prospects[J]. Chinese Optics, 2015, 8(3): 313-328. (in Chinese) doi: 10.3788/co.20150803.0313
    [3] 侯启真, 薛荣荣, 王洁宁. LED阵列发光特性仿真和对比分析[J]. 液晶与显示,2017,32(12):961-967. doi: 10.3788/YJYXS20173212.0961

    HOU Q ZH, XUE R R, WANG J N. Simulation and comparative analysis of LED arrays in light-emitting characteristics[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(12): 961-967. (in Chinese) doi: 10.3788/YJYXS20173212.0961
    [4] 李炳乾, 罗明浩, 俞理云, 等. COB封装全光谱LED光源及其光电特性[J]. 液晶与显示,2018,33(11):931-935. doi: 10.3788/YJYXS20183311.0931

    LI B Q, LUO M H, YU L Y, et al. Full spectrum LED light in COB package and its characteristics[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(11): 931-935. (in Chinese) doi: 10.3788/YJYXS20183311.0931
    [5] 武文杰, 阿木古楞, 刘文全, 等. 氮(氧)化物荧光粉的合成与发光性能[J]. 液晶与显示,2017,32(9):663-676. doi: 10.3788/YJYXS20173209.0663

    WU W J, AMUGULEN, LIU W Q, et al. Synthesis and luminescence of nitride and oxynitride luminescent materials[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(9): 663-676. (in Chinese) doi: 10.3788/YJYXS20173209.0663
    [6] KARUNATILAKA D, ZAFAR F, KALAVALLY V, et al. LED based indoor visible light communications: state of the art[J]. IEEE Communications Surveys &Tutorials, 2015, 17(3): 1649-1678.
    [7] KUMAR S, SINGH P. A comprehensive survey of visible light communication: potential and challenges[J]. Wireless Personal Communications, 2019, 109(2): 1357-1375. doi: 10.1007/s11277-019-06616-3
    [8] 曹婷, 陈华敏. 基于正交频分复用技术的低压电力线通信系统模型[J]. 液晶与显示,2019,34(9):928-934. doi: 10.3788/YJYXS20193409.0928

    CAO T, CHEN H M. Low voltage power line communication system model based on orthogonal frequency division multiplexing technology[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(9): 928-934. (in Chinese) doi: 10.3788/YJYXS20193409.0928
    [9] 王旭东, 崔玉, 吴楠, 等. 室内可见光多维CAP空间调制[J]. 发光学报,2018,39(2):227-235. doi: 10.3788/fgxb20183902.0227

    WANG X D, CUI Y, WU N, et al. Spatial modulation based on multi-dimensional carrierless amplitude and phase for indoor visible light communication system[J]. Chinese Journal of Luminescence, 2018, 39(2): 227-235. (in Chinese) doi: 10.3788/fgxb20183902.0227
    [10] GONZALEZ O, PEREZ-JIMENEZ R, RODRIGUEZ S, et al. OFDM over indoor wireless optical channel[J]. IEE Proceedings-Optoelectronics, 2005, 152(4): 199-204. doi: 10.1049/ip-opt:20045065
    [11] ARMSTRONG J, LOWERY A J. Power efficient optical OFDM[J]. Electronics Letters, 2006, 42(6): 370-372. doi: 10.1049/el:20063636
    [12] TSONEV D, SINANOVIC S, HAAS H. Novel Unipolar Orthogonal Frequency Division Multiplexing (U-OFDM) for optical wireless[C]. Proceedings of the 2012 IEEE 75th Vehicular Technology Conference, IEEE, 2012: 1-5.
    [13] FERNANDO N, HONG Y, VITERBO E. Flip-OFDM for optical wireless communications[C]. Proceedings of 2011 IEEE Information Theory Workshop, IEEE, 2011: 5-9.
    [14] LEE S C J, RANDEL S, BREYER F, et al. PAM-DMT for intensity-modulated and direct-detection optical communication systems[J]. IEEE Photonics Technology Letters, 2009, 21(23): 1749-1751. doi: 10.1109/LPT.2009.2032663
    [15] MOHAMED S D, ANDONOVIC I, SHALABY H, et al.. Modified asymmetrically-clipped optical orthogonal frequency-division multiplexing system performance[C]. Proceedings of 2013 IEEE Photonics Conference, IEEE, 2013: 289-290.
    [16] TSONEV D, HAAS H. Avoiding spectral efficiency loss in unipolar OFDM for optical wireless communication[C]. Proceedings of 2014 IEEE International Conference on Communications, IEEE, 2014: 3336-3341.
    [17] WANG Q, QIAN CH, GUO X H, et al. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission[J]. Optics Express, 2015, 23(9): 12382-12393. doi: 10.1364/OE.23.012382
    [18] DISSANAYAKE S D, ARMSTRONG J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems[J]. Journal of Lightwave Technology, 2013, 31(7): 1063-1172. doi: 10.1109/JLT.2013.2241731
    [19] RANJHA B, KAVEHRAD M. Hybrid asymmetrically clipped OFDM-based IM/DD optical wireless system[J]. IEEE/OSA Journal of Optical Communications and Networking, 2014, 6(4): 387-396. doi: 10.1364/JOCN.6.000387
    [20] GUAN R, HUANG N, WANG J Y, et al. Enhanced hybrid asymmetrically clipped orthogonal frequency division multiplexing for optical wireless communications[J]. Optical Engineering, 2016, 55(5): 056111. doi: 10.1117/1.OE.55.5.056111
    [21] BAI R W, WANG Q, WANG ZH CH. Asymmetrically clipped absolute value optical OFDM for intensity-modulated direct-detection systems[J]. Journal of Lightwave Technology, 2017, 35(17): 3680-3691. doi: 10.1109/JLT.2017.2716983
    [22] NUWANPRIYA A, GRANT A, HO S W, et al.. Position modulating OFDM for optical wireless communications[C]. Proceedings of 2012 IEEE Globecom Workshops, IEEE, 2012: 1219-1223.
    [23] ELGALA H, LITTLE T D C. Polar-based OFDM and SC-FDE links toward energy-efficient Gbps transmission under IM-DD optical system constraints [Invited][J]. Journal of Optical Communications and Networking, 2015, 7(2): A277-A284. doi: 10.1364/JOCN.7.00A277
    [24] MOREOLO M S. Power efficient and cost-effective solutions for optical OFDM systems using direct detection[C]. Proceedings of the 2010 12th International Conference on Transparent Optical Networks, IEEE, 2010: 1-4.
    [25] NADAL L, MOREOLO M S, FABREGA J M, et al.. Comparison of peak power reduction techniques in optical OFDM systems based on FFT and FHT[C]. Proceedings of the 2011 13th International Conference on Transparent Optical Networks, IEEE, 2011: 1-4.
    [26] AVERCHENKO A P, ZHENATOV B D. Comparison of computational costs of Hartley transform and Fourier transform[C]. Proceedings of the 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering, IEEE, 2016: 436-438.
    [27] ZHOU J, QIAO Y J. Low-PAPR asymmetrically clipped optical OFDM for intensity-modulation/direct-detection systems[J]. IEEE Photonics Journal, 2015, 7(3): 7101608.
    [28] 冯海燕, 王旭东, 吴楠, 等. 一种基于哈特莱变换的改进U-OFDM方法[J]. 光通信技术,2016,40(7):25-28.

    FENG H Y, WANG X D, WU N, et al. Modified U-OFDM scheme based on Hartley transform[J]. Optical Communication Technology, 2016, 40(7): 25-28. (in Chinese)
    [29] 冯海燕, 王旭东, 吴楠, 等. 一种新的可见光通信光OFDM方法[J]. 光通信研究,2016,42(3):58-61.

    FENG H Y, WANG X D, WU N, et al. A novel optical-OFDM for visible light communication[J]. Study on Optical Communications, 2016, 42(3): 58-61. (in Chinese)
    [30] TANG J, ZHANG L. Efficient real-Fourier domain-based color shift keying OFDM implemented with Hartley transform for visible light communication system[C]. Proceedings of the 2017 IEEE 85th Vehicular Technology Conference, IEEE, 2017: 1-5.
    [31] AZIM A W, LE GUENNEC Y, MAURY G. Spectrally augmented Hartley transform precoded asymmetrically clipped optical OFDM for VLC[J]. IEEE Photonics Technology Letters, 2018, 30(23): 2029-2032. doi: 10.1109/LPT.2018.2874962
    [32] ISLIM M S, TSONEV D, HAAS H. A generalized solution to the spectral efficiency loss in unipolar optical OFDM-based systems[C]. Proceedings of 2015 IEEE International Conference on Communications, IEEE, 2015: 5126-5131.
    [33] ISLIM M S, TSONEV D, HAAS H. Spectrally enhanced PAM-DMT for IM/DD optical wireless communications[C]. Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, IEEE, 2015: 877-882.
    [34] ISLIM M S, TSONEV D, HAAS H. On the superposition modulation for OFDM-based optical wireless communication[C]. Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, IEEE, 2015: 1022-1026.
    [35] ZHANG T, JI H, GHASSEMLOOY Z, et al. Spectrum-efficient triple-layer hybrid optical OFDM for IM/DD-based optical wireless communications[J]. IEEE Access, 2020, 8: 10352-10362. doi: 10.1109/ACCESS.2020.2964792
    [36] 暴桐, 王旭东, 吴楠, 等. 一种基于星座协作映射的改进P-OFDM方法[J]. 半导体光电,2018,39(1):129-133.

    BAO T, WANG X D, WU N, et al. A modified P-OFDM scheme based on constellation collaborated mapping[J]. Semiconductor Optoelectronics, 2018, 39(1): 129-133. (in Chinese)
    [37] WANG ZH CH, MAO T Q, WANG Q. Optical OFDM for visible light communications[C]. Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference, IEEE, 2017: 1190-1194.
    [38] BRACEWELL R N. The Hartley Transform[M]. New York: Oxford University Press, 1986.
    [39] LI Y CH, TSONEV D, HAAS H. Non-DC-biased OFDM with optical spatial modulation[C]. Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, IEEE, 2013: 486-490.
    [40] BAŞAR E, PANAYIRCI E, UYSAL M, et al.. Generalized LED index modulation optical OFDM for MIMO visible light communications systems[C]. Proceedings of 2016 IEEE International Conference on Communications, IEEE, 2016: 1-5.
    [41] ZHONG W D, CHEN CH, WU D H. Non-hermitian symmetry OFDM for indoor space division multiplexing visible light communications[C]. Proceedings of the 2016 18th International Conference on Transparent Optical Networks, IEEE, 2016: 1-4.
    [42] CAO Y L, ZHOU X T, SUN J, et al.. Optical spatial modulation with DHT-based OFDM in visible light communication systems[C]. Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing, IEEE, 2017: 1-5.
    [43] LE TRAN M, KIM S, KETSEOGLOU T, et al. LED selection and MAP detection for generalized LED index modulation[J]. IEEE Photonics Technology Letters, 2018, 30(19): 1695-1698. doi: 10.1109/LPT.2018.2865591
    [44] ASADZADEH K, DABBO A, HRANILOVIC S. Receiver design for asymmetrically clipped optical OFDM[C]. Proceedings of 2011 IEEE GLOBECOM Workshops, IEEE, 2011: 777-781.
    [45] DANG J, ZHANG Z, WU L. Frequency-domain diversity combining receiver for ACO-OFDM system[J]. IEEE Photonics Journal, 2015, 7(6): 7802510.
    [46] DANG J, ZHANG Z CH, WU L. A novel receiver for ACO-OFDM in visible light communication[J]. IEEE Communications Letters, 2013, 17(12): 2320-2323. doi: 10.1109/LCOMM.2013.111113.132223
    [47] DISSANAYAKE S D, ARMSTRONG J, HRANILOVIC S. Performance analysis of noise cancellation in a diversity Combined ACO-OFDM system[C]. Proceedings of the 2012 14th International Conference on Transparent Optical Networks, IEEE, 2012: 1-4.
    [48] 张琦, 岳殿武. 室内MIMO ACO-OFDM可见光通信系统接收机设计[J]. 中国激光,2020,47(1):0106001. doi: 10.3788/CJL202047.0106001

    ZHANG Q, YUE D W. Design of indoor receiver using multiple-input and multiple-output ACO-OFDM visible light communication system[J]. Chinese Journal of Lasers, 2020, 47(1): 0106001. (in Chinese) doi: 10.3788/CJL202047.0106001
    [49] XIANG N, ZHANG Z CH, DANG J, et al. A novel receiver design for PAM-DMT in optical wireless communication systems[J]. IEEE Photonics Technology Letters, 2015, 27(18): 1919-1922. doi: 10.1109/LPT.2015.2445793
    [50] HUANG N, WANG J B, WANG J ZH, et al. Receiver design for PAM-DMT in indoor optical wireless links[J]. IEEE Photonics Technology Letters, 2015, 27(2): 161-164. doi: 10.1109/LPT.2014.2363876
    [51] HUANG N, WANG J B, PAN C H, et al. Iterative receiver for flip-OFDM in optical wireless communication[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1729-1732. doi: 10.1109/LPT.2015.2438338
    [52] DANG J, ZHANG Z CH, WU L. Improving the power efficiency of enhanced unipolar OFDM for optical wireless communication[J]. Electronics Letters, 2015, 51(21): 1681-1683. doi: 10.1049/el.2015.2024
    [53] WANG Q, WANG ZH CH, GUO X H, et al. Improved receiver design for layered ACO-OFDM in optical wireless communications[J]. IEEE Photonics Technology Letters, 2016, 28(3): 319-322. doi: 10.1109/LPT.2015.2495320
    [54] MOHAMMED M M A, HE C W, ARMSTRONG J. Diversity combining in layered asymmetrically clipped optical OFDM[J]. Journal of Lightwave Technology, 2017, 35(11): 2078-2085. doi: 10.1109/JLT.2017.2685591
    [55] WANG T Q, LI H, HUANG X J. Diversity combining for layered asymmetrically clipped optical OFDM using soft successive interference cancellation[J]. IEEE Communications Letters, 2017, 21(6): 1309-1312. doi: 10.1109/LCOMM.2017.2668421
    [56] BAI R W, JIANG R, MAO T Q, et al. Iterative receiver for ADO-OFDM with near-optimal optical power allocation[J]. Optics Communications, 2017, 387: 350-356. doi: 10.1016/j.optcom.2016.11.078
    [57] WANG T, HOU Y H, MA M D. A novel receiver design for HACO-OFDM by time-domain clipping noise elimination[J]. IEEE Communications Letters, 2018, 22(9): 1862-1865. doi: 10.1109/LCOMM.2018.2847650
    [58] ZHOU J, YAN Y, CAI ZH, et al. A cost-effective and efficient scheme for optical OFDM in short-range IM/DD systems[J]. IEEE Photonics Technology Letters, 2014, 26(13): 1372-1374. doi: 10.1109/LPT.2014.2325602
    [59] 王志斌, 董伟, 任英, 等. 可见光通信中的白光LED非线性噪声分析[J]. 发光学报,2018,39(5):745-750. doi: 10.3788/fgxb20183905.0745

    WANG ZH B, DONG W, REN Y, et al. Nonlinear noise analysis about white LED in visible light communication[J]. Chinese Journal of Luminescence, 2018, 39(5): 745-750. (in Chinese) doi: 10.3788/fgxb20183905.0745
    [60] 唐芳, 徐智勇, 汪井源, 等. DCO-OFDM系统中导频辅助峰均比抑制技术[J]. 光电子·激光,2019,30(10):1116-1122.

    TANG F, XU ZH Y, WANG J Y, et al. Pilot-assisted PAPR reduction technique for DCO-OFDM systems[J]. Journal of Optoelectronics·Laser, 2019, 30(10): 1116-1122. (in Chinese)
    [61] MOSSAAD M S A, HRANILOVIC S, LAMPE L. Visible light communications using OFDM and multiple LEDs[J]. IEEE Transactions on Communications, 2015, 63(11): 4304-4313. doi: 10.1109/TCOMM.2015.2469285
    [62] SHI L N, ZHANG X, WANG W X, et al.. PAPR reduction based on deep autoencoder for VLC DCO-OFDM system[C]. Proceedings of 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, IEEE, 2019: 1-4.
    [63] BAŞAR E, PANAYIRCI E. Optical OFDM with index modulation for visible light communications[C]. Proceedings of the 2015 4th International Workshop on Optical Wireless Communications, IEEE, 2015: 11-15.
    [64] YANG Y, ZENG ZH M, CHENG J L, et al. An enhanced DCO-OFDM scheme for dimming control in visible light communication systems[J]. IEEE Photonics Journal, 2016, 8(3): 7904813.
    [65] 徐宪莹, 王旭东, 吴楠. 基于U-OFDM的室内可见光通信系统调光控制方法[J]. 半导体光电,2015,36(3):455-460.

    XU X Y, WANG X D, WU N. A scheme of U-OFDM based dimming control for indoor visible light communication systems[J]. Semiconductor Optoelectronics, 2015, 36(3): 455-460. (in Chinese)
    [66] 王旭东, 徐宪莹, 吴楠, 等. 室内可见光OFDM通信系统调光控制技术[J]. 光子学报,2015,44(11):1106002. doi: 10.3788/gzxb20154411.1106002

    WANG X D, XU X Y, WU N, et al. Dimming control technique for OFDM based indoor visible light communication system[J]. Acta Photonica Sinica, 2015, 44(11): 1106002. (in Chinese) doi: 10.3788/gzxb20154411.1106002
    [67] WANG C C, YANG Y, CHENG J L, et al. A dimmable OFDM scheme with dynamic subcarrier activation for VLC[J]. IEEE Photonics Journal, 2020, 12(1): 7900112.
    [68] NAJAFI M, SCHOBER R. Intelligent reflecting surfaces for free space optical communications[C]. Proceedings of 2019 IEEE Global Communications Conference, IEEE, 2019: 1-7.
    [69] WANG H B, ZHANG Z CH, ZHU B CH, et al.. Performance of wireless optical communication with reconfigurable intelligent surfaces and random obstacles[EB/OL]. (2020-01-16)[2020-01-17]. https://arxiv.org/abs/2001.05715.
    [70] BASAR E. Reconfigurable intelligent surface-based index modulation: a new beyond MIMO paradigm for 6G[J]. IEEE Transactions on Communications, 2020, 68(5): 3187-3196. doi: 10.1109/TCOMM.2020.2971486
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  57
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-30
  • 修回日期:  2020-05-26
  • 网络出版日期:  2021-04-17

目录

    /

    返回文章
    返回