留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强爆炸光辐射作用下材料的能量耦合特性

高银军 高丽红 张相华 马壮 刘峰 彭国良 田宙

高银军, 高丽红, 张相华, 马壮, 刘峰, 彭国良, 田宙. 强爆炸光辐射作用下材料的能量耦合特性[J]. 中国光学, 2020, 13(6): 1267-1275. doi: 10.37188/CO.2020-0053
引用本文: 高银军, 高丽红, 张相华, 马壮, 刘峰, 彭国良, 田宙. 强爆炸光辐射作用下材料的能量耦合特性[J]. 中国光学, 2020, 13(6): 1267-1275. doi: 10.37188/CO.2020-0053
GAO Yin-jun, GAO Li-hong, ZHANG Xiang-hua, MA Zhuang, LIU Feng, PENG Guo-liang, TIAN Zhou. Energy coupling characteristic of materials under thermal radiation produced by strong explosion[J]. Chinese Optics, 2020, 13(6): 1267-1275. doi: 10.37188/CO.2020-0053
Citation: GAO Yin-jun, GAO Li-hong, ZHANG Xiang-hua, MA Zhuang, LIU Feng, PENG Guo-liang, TIAN Zhou. Energy coupling characteristic of materials under thermal radiation produced by strong explosion[J]. Chinese Optics, 2020, 13(6): 1267-1275. doi: 10.37188/CO.2020-0053

强爆炸光辐射作用下材料的能量耦合特性

doi: 10.37188/CO.2020-0053
基金项目: 国家自然科学基金资助项目(No. 51772027,No. 91330205)
详细信息
    作者简介:

    高银军(1983—),男,陕西宝鸡人,硕士研究生,2009年于中国科学技术大学获得硕士学位,主要从事强光与物质相互作用方面的研究。E-mail:gyj@mail.ustc.edu.cn

    马壮:马 壮(1974—),男,河北昌黎人,博士,教授,博士生导师,1996年、2001年于北京理工大学分别获得学士、博士学位,主要从事高温高能防护涂层材料和金属/陶瓷复合材料方面的研究。E-mail:hstrong929@bit.edu.cn

  • 中图分类号: O432.1; O381

Energy coupling characteristic of materials under thermal radiation produced by strong explosion

Funds: Supported by National Natural Science Foundation of China (No. 51772027, No. 91330205)
More Information
  • 摘要: 为了获取强爆炸光辐射作用下材料的能量耦合特性,发展了强爆炸辐射源参数以及光辐射传输的物理模型和计算方法,计算给出了不同条件下目标位置处的光辐射谱特征。利用材料光谱反射率测量方法,结合光辐射耦合系数计算方法获取了几类材料的能量耦合系数。结果显示:金属、陶瓷材料的光辐射耦合系数相对较小,而碳纤维环氧复合材料的耦合系数可达0.92;采用实际光辐射能谱计算的耦合系数比近似6000 K黑体谱的结果要高,最大约14%。以铝材料为例,光辐射耦合系数随当量及爆心距离增加均表现出逐渐减小的趋势,但总体变化幅度不大。
  • 图  1  当量10 kt下不同时刻火球半径及有效温度的计算结果

    Figure  1.  Calculated results of the fireball’s radius and effective temperature at different moments with 10 kt explosion yield

    图  2  光辐射可见、红外和紫外波段能量比例的实测结果与计算结果的对比

    Figure  2.  Comparison of measured and calculated energy ratios in visible, infrared and ultraviolet bands of thermal radiation

    图  3  不同当量下距爆心投影点1 km的归一化光辐射能谱

    Figure  3.  Normalized spectral distribution under different explosion yields at a range of 1 km from the center of burst projection point

    图  4  20 kt下不同距离处光辐射归一化能谱

    Figure  4.  Normalized spectral distribution of thermal radiation at different distances when the explosion yield is 20 kt

    图  5  材料光谱反射率测量原理及示意图

    Figure  5.  Principle and schematic diagram of the spectral reflectivity measurement system for different materials

    图  6  几类材料在0.2~2.0 µm范围内的光谱反射率

    Figure  6.  Spectral reflectances of typical materials in the range of 0.2 ~ 2.0 µm

    图  7  铝材料光谱吸收率及光辐射能谱分布

    Figure  7.  Spectral absorptivity of aluminum material and its thermal spectrum distribution

    图  8  铝材料背表面温升实测结果与采用耦合系数分别为0.19和0.17的计算结果对比

    Figure  8.  Comparison of the measured temperature rise on the back surface of aluminum material with the calculated results under coupling coefficients of 0.19 and 0.17

    图  9  铝材料光辐射耦合系数与当量(a)及爆心距离(b)的关系

    Figure  9.  Relationship between the coupling coefficients of aluminum material and the explosion yield (a) and burst center distance (b)

    表  1  不同群内光子能量范围(21群)

    Table  1.   Photon energy in different groups (21)

    g12345678910111213
    pe (eV)0.01−0.50.5−1.01.0−1.81.8−2.12.1−2.52.5−3.13.1−4.04.0−7.07.0−1010−2020−4040−7070−100
    g1415161718192021
    pe (eV)100−200200−400400−10001000−2 0002 000−50005000−1000010000−2000020000−80000
    下载: 导出CSV

    表  2  不同当量下光辐射中心波长及其对应的等效黑体温度

    Table  2.   Central wavelength of thermal radiation under different explosion yields and their equivalent blackbody temperatures

    当量/kt201002000
    中心波长/µm0.460.480.52
    等效温度/K6.3×1036.0×1035.6×103
    下载: 导出CSV

    表  3  采用实际光辐射和6000 K黑体辐射谱计算的耦合系数

    Table  3.   Coupling coefficients calculated from the actual thermal radiation spectrum and 6000 K black-body radiation spectrum

    材料类型光辐射耦合系数
    实际光谱6000 K黑体辐射相差(%)
    金属Al0.190.17−10%
    Cu0.280.25−10%
    Ag0.210.18−14%
    陶瓷TiO20.250.23−8%
    复合材料C/E0.920.89−3.3%
    下载: 导出CSV

    表  4  实际光辐射以及6000 K黑体在不同光谱区间的能量份额

    Table  4.   Energy proportion in different spectral intervals for actual thermal radiation and 6000 K blackbody

    所占能量比例(%)
    <0.4 µm0.4~0.76 µm>0.76 µm
    光辐射114049
    6000 K黑体辐射144343
    下载: 导出CSV
  • [1] 乔登江. 核爆炸物理概论[M]. 北京: 国防工业出版社, 2003.

    QIAO D J. Conspectus on Physics of Nuclear Weapon[M]. Beijing: National Defense Industry Press, 2003. (in Chinese)
    [2] BRODE H L, HILLENDAHL R W, LANDSHOFF R K. Thermal radiation phenomena. Volume V. Radiation hydrodynamics of high temperature air[R]. Sunnyvale: Lockheed Missiles and Space Co., 1967.
    [3] GLASSTONE S, DOLAN P J. The Effects of Nuclear Weapons[M]. 3rd ed. Washington, D.C.: United State Department of Defense and the United States Department of Energy, 1977.
    [4] 肇文丽, 张恩山, 李润新. 星载核爆炸光辐射能量分析[C]. 第十届全国核电子学与核探测技术学术年会论文集, 中国核学会, 中国电子学会, 2000.

    ZHAO W L, ZHANG E SH, LI R X. The optical radiation energy analysis of nuclear explosion in the satellite[C]. Proceedings of the Tenth National Conference on Nuclear Electronics & Nuclear Exploration Technology, China Nuclear Society, China Electronics Society, 2000. (in Chinese)
    [5] MARRS R E, MOSS W C, WHITLOCK B. Thermal radiation from nuclear detonations in urban environments[R]. Livermore: Lawrence Livermore National Lab., 2007.
    [6] 庞磊, 张奇. 无约束气云爆炸热辐射伤害效应研究[J]. 北京理工大学学报,2010,30(10):1147-1150.

    PANG L, ZHANG Q. Study into injury effect of thermal radiation from unconfined vapor cloud explosion[J]. Transactions of Beijing Institute of Technology, 2010, 30(10): 1147-1150. (in Chinese)
    [7] 孙承伟. 激光辐照效应[M]. 北京: 国防工业出版社, 2002.

    SUN CH W. Laser Irradiation Effect[M]. Beijing: National Defense Industry Press, 2002. (in Chinese)
    [8] 刘峰, 王立君, 王玉恒, 等. 金属材料表面激光耦合系数的反演[J]. 光学 精密工程,2011,19(2):421-428. doi: 10.3788/OPE.20111902.0421

    LIU F, WANG L J, WANG Y H, et al. Inversion for laser coupling coefficient on metal material surfaces[J]. Optics and Precision Engineering, 2011, 19(2): 421-428. (in Chinese) doi: 10.3788/OPE.20111902.0421
    [9] 吴丽雄, 叶锡生, 王立君, 等. 激光作用下环氧/硅树脂复合涂层的1.3 μm反射特性研究[J]. 光学学报,2011,31(8):0814002. doi: 10.3788/AOS201131.0814002

    WU L X, YE X SH, WANG L J, et al. Reflectance of epoxy/organsilicone composite coating at 1.3 μm under laser irradiation[J]. Acta Optica Sinica, 2011, 31(8): 0814002. (in Chinese) doi: 10.3788/AOS201131.0814002
    [10] 齐立涛. 真空条件下不同波长固体激光烧蚀单晶硅的实验研究[J]. 中国光学,2014,7(3):442-448.

    QI L T. Different wavelength solid-state laser ablation of silicon wafer in vacuum[J]. Chinese Optics, 2014, 7(3): 442-448. (in Chinese)
    [11] 王贵兵, 刘仓理. 芳纶纤维复合材料对激光的吸收特性研究[J]. 强激光与粒子束,2003,15(11):1065-1067.

    WANG G B, LIU C L. Absorption characteristics of the composite reinforced by polyaryl amide fibers irradiated by high power laser[J]. High Power Laser and Particle Beams, 2003, 15(11): 1065-1067. (in Chinese)
    [12] 张翔宇. 激光辐照下金属样品的能量耦合特性研究[D]. 长沙: 国防科技大学, 2016.

    ZHANG X Y. Research on the energy coupling characteristic of metal samples under laser irradiation[D]. Changsha: National University of Defense Technology, 2016. (in Chinese)
    [13] 绪梅, 朱继, 王良厚, 等. 核爆炸光辐射对物体热效应的数值模拟[C]. 第十七届全国核电子学与核探测技术学术年会论文集, 中国电子学会, 2014.

    XU M, ZHU J, WANG L H, et al.. Thermal effect simulation of nuclear explosion light radiation on objects[C]. Proceedings of the Seventeenth National Conference on Nuclear Electronics and Nuclear Exploration Technology, Gansu Lanzhou, 2014. (in Chinese)
    [14] 关志远, 绪梅, 徐鸿明. 橡胶材料的核爆炸热毁伤效应分析[J]. 工兵装备研究,2019,38(3):45-47.

    GUAN ZH Y, XU M, XU H M. Analysis on thermal damage effect of rubber materials by nuclear explosion[J]. Engineer Equipment Research, 2019, 38(3): 45-47. (in Chinese)
    [15] SYMBALISTY E M D, ZINN J, WHITAKER R W. RADFLO physics and algorithms[R]. Washington: Los Alamos National Lab., 1995.
    [16] 陈健华, 王心正, 谢龙生, 等. 均匀大气中的强爆炸一维辐射流体力学数值解[J]. 爆炸与冲击,1981,1(2):37-49.

    CHEN J H, WANG X ZH, XIE L SH, et al. An one-dimensional radiation hydrodynamic numerical solution for a strong explosion in uniform atmosphere[J]. Explosion and Shock Waves, 1981, 1(2): 37-49. (in Chinese)
    [17] 田宙, 乔登江, 郭永辉. 不同高度强爆炸早期火球数值研究[J]. 兵工学报,2009,30(8):1078-1083.

    TIAN ZH, QIAO D J, GUO Y H. Numerical investigation of early fireball of strong explosion for different altitudes[J]. Acta Armamentarii, 2009, 30(8): 1078-1083. (in Chinese)
    [18] 高银军, 闫凯, 田宙, 等. 强爆炸早期火球光辐射能谱的数值计算[J]. 爆炸与冲击,2015,35(3):289-295.

    GAO Y J, YAN K, TIAN ZH, et al. Numerical calculation of early fireball radiation spectrum in strong explosion[J]. Explosion and Shock Waves, 2015, 35(3): 289-295. (in Chinese)
    [19] SHESTAKOV A I, OFFNER S S R. A multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR[J]. Journal of Computational Physics, 2008, 227(3): 2154-2186. doi: 10.1016/j.jcp.2007.09.019
    [20] 吴健辉. 核爆炸光辐射特性及探测技术的理论与实验研究[D]. 武汉: 华中科技大学, 2009.

    WU J H. Study on Theory and experiment of the characteristics and detection technology of nuclear explosion radiation[D]. Wuhan: Huazhong University of Science & Technology, 2009. (in Chinese)
    [21] 高银军, 关奇, 陈志华, 等. 强爆炸热辐射在大气中的传输计算与分析[J]. 现代应用物理,2014,5(3):191-195.

    GAO Y J, GUAN Q, CHEN ZH H, et al. Calculation and analysis of atmospheric transmission of thermal radiation from strong explosion[J]. Modern Applied Physics, 2014, 5(3): 191-195. (in Chinese)
    [22] LYU Y Y, GAO SH, XU Q J. Scattering characteristics of C@H2O composite particle based on Mie light scattering theory[J]. Chinese Journal of Luminescence, 2019, 40(3): 298-303.
    [23] 吴健辉, 杨坤涛, 张南洋生. 核爆炸光辐射探测中的大气传输性能研究[J]. 应用光学,2008,29(5):815-820.

    WU J H, YANG K T, ZHANG N Y SH. Atmosphere transmission in detection of nuclear explosion light radiation[J]. Journal of Applied Optics, 2008, 29(5): 815-820. (in Chinese)
    [24] 王飞翔, 郭杰, 许方宇, 等. 不同海拔地区红外大气透过率的计算和测量[J]. 中国光学,2019,12(4):843-852. doi: 10.3788/co.20191204.0843

    WANG F X, GUO J, XU F Y, et al. Calculation and measurement of infrared atmospheric transmittance at different altitudes[J]. Chinese Optics, 2019, 12(4): 843-852. (in Chinese) doi: 10.3788/co.20191204.0843
    [25] 刘志伟, 路远, 侯典心, 等. 激光辐照VO2薄膜温度场分布及透射特性研究[J]. 发光学报,2018,39(11):1604-1612. doi: 10.3788/fgxb20183911.1604

    LIU ZH W, LU Y, HOU D X, et al. Temperature field distribution and transmittance characteristics of VO2 films irradiated by laser[J]. Chinese Journal of Luminescence, 2018, 39(11): 1604-1612. (in Chinese) doi: 10.3788/fgxb20183911.1604
    [26] 孙毅, 高云国, 邵帅. 高功率激光热效应对合束系统的影响[J]. 光学 精密工程,2015,23(11):3097-3106. doi: 10.3788/OPE.20152311.3097

    SUN Y, GAO Y G, SHAO SH. Influence of high power laser thermal effect on beam combination system[J]. Optics and Precision Engineering, 2015, 23(11): 3097-3106. (in Chinese) doi: 10.3788/OPE.20152311.3097
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  95
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 修回日期:  2020-05-26
  • 网络出版日期:  2020-09-07
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回