留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Absorption enhancement of silicon via localized surface plasmons resonance in blue band

WANG Hao-bing TAO Jin LV Jin-guang MENG De-jia LI Yang ZHAO Yong-zhou WANG Jia-xian ZHANG Jun QIN Yu-xin WANG Wei-biao LIANG Jing-qiu

王浩冰, 陶金, 吕金光, 孟德佳, 李阳, 赵永周, 王家先, 张军, 秦余欣, 王惟彪, 梁静秋. 局域表面等离激元共振增强硅蓝光波段吸收特性研究[J]. 中国光学, 2020, 13(6): 1362-1384. doi: 10.37188/CO.2020-0056
引用本文: 王浩冰, 陶金, 吕金光, 孟德佳, 李阳, 赵永周, 王家先, 张军, 秦余欣, 王惟彪, 梁静秋. 局域表面等离激元共振增强硅蓝光波段吸收特性研究[J]. 中国光学, 2020, 13(6): 1362-1384. doi: 10.37188/CO.2020-0056
WANG Hao-bing, TAO Jin, LV Jin-guang, MENG De-jia, LI Yang, ZHAO Yong-zhou, WANG Jia-xian, ZHANG Jun, QIN Yu-xin, WANG Wei-biao, LIANG Jing-qiu. Absorption enhancement of silicon via localized surface plasmons resonance in blue band[J]. Chinese Optics, 2020, 13(6): 1362-1384. doi: 10.37188/CO.2020-0056
Citation: WANG Hao-bing, TAO Jin, LV Jin-guang, MENG De-jia, LI Yang, ZHAO Yong-zhou, WANG Jia-xian, ZHANG Jun, QIN Yu-xin, WANG Wei-biao, LIANG Jing-qiu. Absorption enhancement of silicon via localized surface plasmons resonance in blue band[J]. Chinese Optics, 2020, 13(6): 1362-1384. doi: 10.37188/CO.2020-0056

局域表面等离激元共振增强硅蓝光波段吸收特性研究

doi: 10.37188/CO.2020-0056
详细信息
  • 中图分类号: O431.1; O436.2; O471.5

Absorption enhancement of silicon via localized surface plasmons resonance in blue band

Funds: Supported by the National Key Research and Development Program of China (Grant No. 2018YFB1801900), Science and Technology Plan of Guangdong Province, China (Grant No. 2016B010111003) and Development of Science and Technology Plan of Jilin Province, China (Grant No. 20180801024GX and No. 20190302062GX), the Youth Innovation Promotion Association Foundation (NO. 2018254), the State Key Laboratory of Applied Optics 2019 Open Foundation (SKLAO: 201908)
More Information
    Author Bio:

    Wang Haobing (1994—), male, born in Songyuan City, Jilin province, Master Degree Candidate. In 2017, he graduated from Changchun University of Science and Technology with a Bachelor of Science degree. He is now a graduate student of Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. He is mainly engaged in the research of nanophotonics and semiconductor photodetectors. E-mail: 996490955@qq.com

    Wang Weibiao (1962—), male, born in Yangzhou City, Jiangsu province. He is a doctor, researcher and doctoral supervisor. He received his doctor’s degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 1999. Now he is a researcher of this institute. He is mainly engaged in the research of photonic crystal and micro-nano photonics, LED array chip integration and application, field emission materials and electron emission characteristics. E-mail: wangwb@ciomp.ac.cn

    Liang Jingqiu (1962—), female, born in Changchun City, Jilin Province. She is a doctor, researcher and doctoral supervisor. In 2003, she received her doctor's degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. Now she is a researcher of this institute. She is mainly engaged in the research of micro/nano optical structures, devices and systems, infrared spectrum/imaging spectrum and infrared optical instruments, micro LED microdisplay chip and its application, and visible light communication devices and systems. E-mail: liangjq@ciomp.ac.cn

    Corresponding author: wangwb@ciomp.ac.cnliangjq@ciomp.ac.cn
  • 摘要: 为增强硅的蓝光吸收,在硅表面设计银纳米颗粒阵列,基于局域表面等离激元共振效应对增强的硅蓝光吸收特性进行了分析研究。采用有限时域差分法计算银纳米颗粒阵列/硅复合结构中硅的蓝光吸收特性。结果表明:金属颗粒的消光能力与其几何参数有关,改变银纳米颗粒阵列的半径r、高度H与周期P可调控局域表面等离激元共振强度与共振频率,当银纳米颗粒阵列参数设定为:r = 18.5 nm、H = 45 nm、P = 49 nm时,在共振吸收波长为465 nm的情况下,硅的蓝光吸收率由59%增加至94%,光吸收增益为0.57,光生载流子数目增益为0.53,分析认为是局域表面等离激元共振增强硅在蓝光波段的光吸收导致上述增益现象。本文的研究结果对了解局域表面等离激元效应,改善硅的蓝光吸收特性,设计和制备高蓝光响应度硅基可见光光电探测器具有重要的参考价值。
  • 图  1  金属球状结构的局域表面等离激元示意图

    Figure  1.  Schematic diagram of localized surface plasmons with a metallic spherical structure

    图  2  Ag-NPs/Si模型结构

    Figure  2.  Model structure of Ag-NPs/Si

    图  3  Ag-NPs几何参数对硅的光学行为的影响。(a)半径r对硅在蓝光波段的吸收影响;(b)光吸收率与共振波长随半径r的变化;(c)半径r对硅在蓝光波段的吸收增益影响

    Figure  3.  Influence of geometric parameters of Ag-NPs on the optical properties of silicon. (a) Absorptance versus radius r in blue band; (b) absorptance and resonant wavelength versus radius r; (c) absorption gain versus radius r in blue band

    图  4  Ag-NPs几何参数对硅的光学性质的影响。(a)高度H对硅在蓝光波段的吸收影响;(b)光吸收率与共振波长随高度H的变化;(c)高度H对硅在蓝光波段的吸收增益影响

    Figure  4.  Influence of geometric parameters of Ag-NPs on the optical properties of silicon. (a) Absorptance versus height H in blue band; (b) absorptance and resonant wavelength versus height H; (c) absorption gain versus height H in blue band

    图  5  Ag-NPs几何参数对硅的光学性质影响。(a)周期P对硅在蓝光波段的吸收影响;(b)光吸收率与共振波长随周期P的变化;(c)周期P对硅在蓝光波段的吸收增益影响

    Figure  5.  Influence of geometric parameters of Ag-NPs on the optical properties of silicon. (a) absorptance versus period P in blue band; (b) absorptance and resonant wavelength versus period P; (c) absorption gain versus period P in blue band

    图  6  可见光波段硅的光吸收。(a)硅与基于Ag-NPs阵列硅的吸收率曲线;(b)硅的光吸收增益

    Figure  6.  Si-absorptance in visible bands from 380 nm to 760 nm. (a) Absorptances of silicon without and with Ag-NPs on the surface; (b) absorption gain of silicon

    图  7  蓝光波段结构表面反射率R与Ag-NPs光吸收损耗Ametal的关系曲线

    Figure  7.  Reflectivity R of structure surface in blue band versus absorption loss Ametal of Ag-NPs

    图  8  蓝光波段Ag-NPs光吸收损耗Ametal曲线

    Figure  8.  Absorption loss Ametal of Ag-NPs in blue band

    图  9  入射波长465 nm载流子数量曲线:(a)载流子数量曲线;(b)载流子增益比

    Figure  9.  Generation rate of carriers at λin = 465 nm: (a) carrier generation rates of Si/Ag-NPs and Si; (b) gain ratio

  • [1] QIN P, REN Y, LIU L W, et al. Development of plasmon-resonance of metal nanoparticles enhanced harmonic generation in nonlinear medium[J]. Chinese Optics, 2016, 9(2): 213-225. (in Chinese) doi: 10.3788/co.20160902.0213
    [2] LEI J G, LIU T H, LIN J Q, et al. New applications of surface plasmon polaritons[J]. Chinese Optics, 2010, 3(5): 432-439. (in Chinese) doi: 10.3969/j.issn.2095-1531.2010.05.003
    [3] MA G H, ZHANG J B, ZHANG H, et al.. Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons[J]. Chinese Optics, 2019, 12(3): 649-662.
    [4] XIANG CH P, YUAN ZH SH, LIU J, et al. Surface plasmon polaritons and F-P resonance coupled modes balance the generation rate of charge carriers of Perovskite solar cells[J]. Chinese Journal of Luminescence, 2018, 39(12): 1749-1756. (in Chinese) doi: 10.3788/fgxb20183912.1749
    [5] XU H, YAN L, LI L, et al. Influence of localized surface Plasmons on the photoluminescence efficiency of InGaN/GaN multiple quantum wells[J]. Chinese Journal of Luminescence, 2017, 38(3): 324-330. (in Chinese) doi: 10.3788/fgxb20173803.0324
    [6] QIAO Q, SHAN CH X, LIU J Y, et al. Localized surface plasmon resonance enhanced electroluminescence from ZnO-based light-emitting diodes via optimizing the density of sliver nanoparticles[J]. Chinese Journal of Luminescence, 2015, 36(12): 1363-1369. (in Chinese) doi: 10.3788/fgxb20153612.1363
    [7] BUTUN S, CINEL N A, OZBAY R. Nanoantenna coupled UV subwavelength photodetectors based on GaN[J]. Optics Express, 2012, 20(3): 2649-2656. doi: 10.1364/OE.20.002649
    [8] QIAO J, XIE SH, MAO L H, et al. Optimum design of silicon-based metal-semiconductor-metal photodetector with subwavelength metal grating[J]. Chinese Journal of Luminescence, 2018, 39(3): 363-368. (in Chinese) doi: 10.3788/fgxb20183903.0363
    [9] SHAO W J. Design and numerical simulation of optical filter and metamaterial perfect absorber based on surface plasmon polaritons[D]. Hefei: University of Science and Technology of China, 2014. (in Chinese).
    [10] WOKAUN A, GORDON J P, LIAO P F. Radiation damping in surface-enhanced raman scattering[J]. Physical Review Letters, 1982, 48(14): 957-960. doi: 10.1103/PhysRevLett.48.957
    [11] CLAVERO C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 2014, 8(2): 95-103. doi: 10.1038/nphoton.2013.238
    [12] KNIGHT M W, SOBHANI H, NORDLANDER P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030): 702-704. doi: 10.1126/science.1203056
    [13] LI D B, SUN X J, SONG H, et al. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement[J]. Advanced Materials, 2012, 24(6): 845-849. doi: 10.1002/adma.201102585
    [14] SOBHANI A, KNIGHT M W, WANG Y M, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J]. Nature Communications, 2013, 4(1): 1643. doi: 10.1038/ncomms2642
    [15] BAO G H, LI D B, SUN X J, et al. Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al nanoparticles[J]. Optics Express, 2014, 22(20): 24286-24293. doi: 10.1364/OE.22.024286
    [16] QU D, LIU F, YU J F, et al. Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices[J]. Applied Physics Letters, 2011, 98(11): 113119. doi: 10.1063/1.3559225
    [17] LIU Y, CAI X P, LIN L, et al. Research on the fusion technology of LED visible optical communication network with ethernet[J]. Optical Communication Technology, 2019, 43(1): 1-4. (in Chinese)
    [18] CHI N, WANG CH F, LI W P, et al. Research progress of underwater visible light communication technology based on blue/green LED[J]. Journal of Fudan University (Natural Science), 2019, 58(5): 537-548. (in Chinese)
    [19] ZHAO T F, MA ZH, LI X SH, et al. Research on line-of-sight channel model of short-range LED optical communication[J]. Acta Photonica Sinica, 2020, 49(1): 106001. (in Chinese) doi: 10.3788/gzxb20204901.0106001
    [20] TAFLOVE A, HAGNESS S C. Computational Electrodynamics: The Finite-Difference Time-Domain Method[M]. 2nd ed. Boston: Artech House, 2000.
    [21] ZHU X P, ZHANG SH, SHI H M, et al. Research progress of coupling theory of metal surface plasmon[J]. Acta Physica Sinica, 2019, 68(24): 247301. (in Chinese) doi: 10.7498/aps.68.20191369
    [22] CONG CH. Localized surface plasmon resonance properties of noble metal nanoparticles[D]. Nanjing: Nanjing University, 2011. (in Chinese).
    [23] BAI Y C, GAO C B, YIN Y D. Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability[J]. Nanoscale, 2017, 9(39): 14875-14880. doi: 10.1039/C7NR06002E
    [24] WEST P R, ISHII S, NAIK G V, et al. Searching for better plasmonic materials[J]. Laser &Photonics Reviews, 2010, 4(6): 795-808.
    [25] SCHINKE C, PEEST P C, SCHMIDT J, et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon[J]. AIP Advances, 2015, 5(6): 067168. doi: 10.1063/1.4923379
    [26] PALIK E D. Handbook of Optical Constants of Solids[M]. New York: Academic Press, 1998.
    [27] WANG SH J, SU D, ZHANG T. Research progress of surface plasmons mediated photothermal effects[J]. Acta Physica Sinica, 2019, 68(14): 144401. (in Chinese) doi: 10.7498/aps.68.20190476
    [28] MIE G J A P. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions[J]. Annals of Physics, 1908, 25(3): 377-445.
    [29] KELLY K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677. doi: 10.1021/jp026731y
    [30] PIETROBON B, MCEACHRAN M, KITAEV V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods[J]. ACS Nano, 2009, 3(1): 21-26. doi: 10.1021/nn800591y
    [31] LINK S, EL-SAYED M A. spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J]. The Journal of Physical Chemistry B, 1999, 103(40): 8410-8426. doi: 10.1021/jp9917648
    [32] KHLEBTSOV B, KHANADEEV V, KHLEBTSOV N. Tunable depolarized light scattering from gold and gold/silver nanorods[J]. Physical Chemistry Chemical Physics, 2010, 12(13): 3210-3218. doi: 10.1039/b925102b
    [33] MAILLARD M, GIORGIO S, PILENI M P. Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties[J]. The Journal of Physical Chemistry B, 2003, 107(11): 2466-2470. doi: 10.1021/jp022357q
    [34] GARCIA M A. Surface plasmons in metallic nanoparticles: fundamentals and applications[J]. Journal of Physics D:Applied Physics, 2011, 44(28): 283001. doi: 10.1088/0022-3727/44/28/283001
    [35] LAI SH M, HUANG ZH W, WANG Y J, et al. Simulation and analysis of local surface plasmon resonance of Ag nanostructures[J]. Laser &Optoelectronics Progress, 2018, 55(12): 122601. (in Chinese)
    [36] LINK S, El-SAYED M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles[J]. The Journal of Physical Chemistry B, 1999, 103(21): 4212-4217. doi: 10.1021/jp984796o
    [37] LINK S, MOHAMED M B, EL-SAYED M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant[J]. The Journal of Physical Chemistry B, 1999, 103(16): 3073-3077. doi: 10.1021/jp990183f
    [38] MARKEL V A. Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure[J]. Journal of Modern Optics, 1993, 40(11): 2281-2291. doi: 10.1080/09500349314552291
    [39] ZOU SH L, JANEL N, SCHATZ G C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes[J]. The Journal of Chemical Physics, 2004, 120(23): 10871-10875. doi: 10.1063/1.1760740
    [40] ROCKSTUHL C, FAHR S, LEDERER F. Absorption enhancement in solar cells by localized plasmon polaritons[J]. Journal of Applied Physics, 2008, 104(12): 123102. doi: 10.1063/1.3037239
    [41] GÄRTNER W W. Depletion-layer Photoeffects in semiconductors[J]. Physical Review, 1959, 116(1): 84-87. doi: 10.1103/PhysRev.116.84
  • 加载中
图(9)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  119
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-02
  • 修回日期:  2020-04-27
  • 网络出版日期:  2020-10-22
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回