Suppressed ion migration in halide perovskite nanocrystals by simultaneous Ni2+ doping and halogen vacancy filling
-
摘要: 卤化铅钙钛矿(LHPs)由于具有优异的光电性能和制备成本低等优点,已成为新一代光电器件的有力候选材料。然而,缺陷造成的离子迁移会导致LHPs纳米晶的晶体结构解离分解。因此,稳定性成为LHPs实际应用中亟待解决的问题。本文旨在研究镍离子替位掺杂及卤素空位填补对CsPbBr3纳米晶中的离子迁移抑制作用。通过离子迁移活化能的测定和高分辨透射电镜的原位观察,分析了前驱体掺杂剂对加强LHPs稳定性的作用原理。首先,选用乙酰丙酮镍和溴化镍作为掺杂剂,合成了掺杂LHPs纳米晶。其次,通过吸收-荧光光谱,X射线衍射,X射线光电子衍射,透射电子显微镜等测试手段对掺杂样品的光学及化学组成进行分析。最后,通过纳米晶薄膜电导率的温度依赖关系计算出其离子迁移活化能,并结合高分辨电镜原位观察纳米晶在高能电子束辐照下的形貌演变过程,揭示了不同掺杂剂对合成掺杂LHPs稳定性的影响。实验结果表明:Ni2+掺杂CsPbBr3样品的离子迁移活化能相较本征CsPbBr3样品(0.07 eV)有显著提升,其中乙酰丙酮镍掺杂样品的离子迁移活化能为0.238 eV,溴化镍掺杂样品的离子迁移活化能为0.487 eV。另外,电子束辐照测试表明溴化镍掺杂钙钛矿晶体表现出更高的结构稳定性,这主要归因于掺杂的Ni2+对卤素的强结合和卤素填补空位缺陷的协同钝化作用。Ni2+掺杂和卤素空位填充协同可以有效抑制卤化物钙钛矿纳米晶体中的离子迁移。Abstract: Lead Halide Perovskites(LHPs) are promising candidates for next-generation optoelectronic application. However, defect-induced ion migration causes phase degradation in LHP nanocrystals. Therefore, material stability has become an urgent problem that impedes practical applications. In this paper, we aim to study the influence of doping cations on inhibiting the migration of halogen ions in perovskite nanocrystals. Through the measurement of ion migration activation energy and in-situ high-resolution transmission electron microscope technology, the effect of precursor dopants on the stability of LHPs were analyzed. Firstly, we synthesized two types of LHP nanocrystals with high crystal quality using nickel acetylacetonate and nickel bromide as precursor dopants, respectively. Secondly, the optical properties and component elements of the doped samples were analyzed by absorption-fluorescence spectroscopy, X-ray diffraction, X-ray photoelectron diffraction, and transmission electron microscopy. Finally, the ion migration activation energies of various LHP films were measured using temperature-dependent ion conductivity tests, and the influence of the precursor dopants on the stability of as-synthesized doped LHPs was compared with the results from high-resolution electron microscopy. The results showed that the activation energies of the doped CsPbBr3 samples were significantly improved compared to the intrinsic CsPbBr3 sample (0.07 eV), which were determined to be 0.238 eV for nickel acetylacetonate and 0.487 eV for nickel bromide. In addition, the electron irradiation experiments showed that the nickel bromide-doped perovskite nanocrystals exhibited higher structural stability. This is due to the strong bonding of doped Ni2+ to halogen and the synergistic passivation effect of halogen filling vacancy defects. It can be concluded that Ni2+ doping and halogen vacancy filling can effectively inhibit ion migration in halide perovskite nanocrystals.
-
1. 引 言
卤化铅钙钛矿(LHPs)具有优异的光电性能,适合在发光二极管、太阳能电池、探测器和激光器等光电子器件中应用,引起了科研工作者的广泛关注[1-5]。经过近十年的发展,基于钙钛矿材料的光伏电池的能量转化效率及电致发光二极管的外量子效率均已超过了20%[3, 5-10]。然而,钙钛矿材料本身稳定性不佳,极大地阻碍了其商业化应用。大量的实验和理论计算表明,卤化物钙钛矿材料中普遍存在离子迁移现象,其诱导产生的带电离子的迁移和积聚会导致钙钛矿材料的元素分布以及内建电场发生显著变化, 甚至可引起局部晶体结构的改变,是影响钙钛矿器件工作稳定性的关键因素[11-14]。导致这种固有的不稳定性的主要原因是其离子迁移活化能小,在高湿、光照、电场作用下相结构容易分解衰败[15]。由于活化能与化学合成密切相关,不同的实验组使用不同的方式得到的卤素离子在钙钛矿中的迁移活化能在0.06 eV到0.8 eV之间[15-21]。最近,杨培东课题组通过构建CsPbBr3-CsPbCl3单晶微米棒异质结,结合空间分辨光致发光寿命和表面电位测量,为卤化物空位可促进离子扩散提供了证据。同时,相对于有机-无机杂化钙钛矿,全无机LHPs的A位原子迁移活化能相对更大,对离子迁移的作用较小[15]。因此,卤素空位对离子扩散有重要的促进作用,是影响LHPs长期稳定的决定性因素。M. Saiful Islam等人采用第一性原理计算得到在MAPbI3中,I−的迁移活化能为0.58 eV,MA+的迁移活化能为0.84 eV, Pb2+的迁移活化能为2.31 eV,可见,有机-无机卤化铅钙钛矿中的离子迁移以卤素离子迁移为主[13]。
较小的离子迁移活化能使得卤素离子在电场、光场、温度场等工作条件下容易通过缺陷和晶界扩散[13, 14, 17, 20, 22-25]。近几年,科研人员已证实通过控制表面配体密度、表界面工程、控制颗粒生长或构建二维结构等方法,可以减少离子迁移的影响[26-31]。然而,这些方法都只是通过改善局部晶体结构的方式提升离子迁移活化能,减少离子迁移通道,并不能彻底解决该难题。
LHPs具有组分和能带可调性,可以通过卤素离子的交换、混合或者将离子半径较小的过渡金属阳离子部分置换到LHPs的主晶格中,调节激子的弛豫动力过程[32-52]。以上方法实现对激子调控主要基于杂质离子在晶格中产生的3种效应:(1)释放剩余的晶格应变[37],(2)提高钙钛矿晶格的形成能[30, 32, 37],(3)改善晶格的短程有序程度[32, 39]。在以往的报道中,使用金属卤化物作为掺杂剂前驱体,无论是否成功地掺杂到晶格中,都能显著提高LHPs的稳定性,并伴随光学性质的改善。然而,卤化物掺杂对提高LHPs稳定性的机理却鲜有报道[30-31, 34-36, 40-45]。
本项工作研究了钙钛矿稳定性和生长动力学的关系,发现掺杂能够提高CsPbBr3纳米晶中Br−的离子迁移活化能,同时使用溴化物补偿也能够起到填补溴空位的作用,降低离子迁移的概率。通过比较使用不同镍前驱体合成的卤化铅钙钛矿的离子迁移活化能和原位电子束辐照对照实验,证明掺杂后的样品离子迁移活化能均得到了提高,同时电子束辐照的耐受力也得到了极大的提升。另外,实验还证实,使用溴化镍掺杂获得的掺杂钙钛矿样品相对使用乙酰丙酮镍合成的样品具有更好的电子束辐照稳定性和更高的离子迁移活化能。
2. 样品的制备及测试
溴化铅 (99.99%),油胺(OAm, 80%~90%),油酸(OA, 85%),二甲基亚砜(DMSO, 99.8%),N, N-二甲基甲酰胺(DMF,99.9%)购买自阿拉丁试剂公司,溴化铯 (99.5%),溴化镍(NiBr2,96%),乙酰丙酮镍(Ni(acac)2,95%)购买自麦克林试剂公司,己烷(99.0%)甲苯(99.5%),乙酸乙酯(99%)购买自国药集团化学试剂有限公司。所有原料和溶剂未经特殊说明,都是商业购买,无进一步纯化处理。
以合成CsPb1−xNix
Br3为例,展示Ni掺杂LHPs的合成过程。前驱体:PbBr2(0.48 mmol),CsBr(0.4 mmol),NiBr2(或Ni(acac)2(0.048 mmol)加入DMSO(2 mL)和DMF(8 mL)中,加热至80 ℃搅拌溶解,使用22 μm孔隙的滤头过滤掉不溶物。加入OAm(4 mL)、OA(4 mL)继续搅拌。取15 mL甲苯加入20 mL的烧瓶中。然后,在剧烈搅拌下迅速加入0.15 mL上述溶液。反应6 min后,加入30 mL乙酸乙酯以10000 r/min的转速离心2 min,取沉淀物加入2 mL己烷后再次以9000 r/min离心1 min,去除沉淀。对于明暗电流测试实验,需再次加入20 mL乙酸乙酯离心,使用9000 r/min离心,取沉淀继续测试。 利用X射线光电子能谱(XPS)系统(Thermo Scientific Escalab 250XI)对元素的价态进行了研究。在记录光谱之前,用蚀刻时间为10 s的Ar离子蚀刻法去除样品表面的污染物。为了消除电荷效应,所有的结合能都由284.6 eV的C 1s线校准。用ICP-MS(i- CAPQ, Thermo Scientific)测定了样品中铅、镍离子的浓度,用粉末X射线衍射仪(Bruker-AXS D8 Advance)对样品的晶体结构进行了表征。TEM和HRTEM测量是在FEI Tecnai G20上进行的,使用的是碳支持膜。采用岛津3600紫外/可见分光光度计以及Cary Eclipse荧光光谱仪进行吸收光谱和荧光光谱的测定。
采用Keysight B1500A测量了CsPb1−xNixBr3晶体的电流-电压(I-V) 数值。将CsPb1−xNixBr3薄膜组装在金电极的石英基片上。为使晶体干燥,该器件在热台上以55 ℃退火5 min。金叉指电极沟道宽为20 μm。
3. 掺杂钙钛矿的样品表征
3.1 掺杂钙钛矿的结构性能表征
为了确定Ni2+是否进入晶格,分别对掺镍和未掺杂镍的CsPbBr3纳米晶进行了X射线衍射(XRD)、荧光光谱和吸收光谱、透射电镜(TEM)表征测试(图1,彩图见期刊电子版)。图1(a)~1(d)为未掺杂和掺杂的CsPbBr3 纳米晶的吸收光谱和PL光谱。可以看出,在可见光和红外光谱范围内,在室温测试条件下镍掺杂不会引入新的吸收带或掺杂剂相关的荧光发射。未掺杂和掺杂镍的纳米晶体TEM图像如图1(e)~1(g)所示。结果表明,在掺杂镍的钙钛矿纳米晶的合成过程中,形貌得以保留。然而,TEM图像中没有观察到明显的晶格变化,这可能是由于实际掺入的Ni太少,掺杂含量由电感耦合等离子体质谱(ICP-MS)测定[53-54](如表1)。图1(h)为掺杂Ni的CsPbBr3纳米晶与本征CsPbBr3的XPS图谱。图1(i)、1(k)为样品的XRD图谱;图1(j)、1(l)分别为高分辨XRD谱。对于所有的LHPs纳米晶,掺镍的CsPbBr3纳米晶的XRD图谱只显示出斜方晶相的峰,与未掺杂的主纳米晶的峰几乎相同[11,32,35,42,55-57]。然而,掺杂后的样品(110)衍射面转向更高的角度,其中,溴化镍掺杂样品从21.52°增加到了21.57°,而乙酰丙酮镍为前驱体掺杂样品从21.5°转向21.56°,这种转变是由于Ni2+ (0.083 nm)尺寸比Pb2+(0.133 nm)小所引起的[32, 38, 58-60]。用X射线光电子能谱(XPS)对晶体进行氦气蚀刻10 s的Ni:CsPbBr3进行测试分析,证实了样品中Ni2+的存在。
图 1 钙钛矿样品的结构和性能。(a, b)为溴化镍掺杂(NiBr2-doped)CsPbBr3纳米晶的吸收光谱和发射光谱。(c, d) 乙酰丙酮镍掺杂(Ni(acac)2-doped))CsPbBr3纳米晶吸收光谱和发射光谱。(e, f, g)分别为未掺杂,乙酰丙酮镍掺杂及溴化镍掺杂CsPbBr3纳米晶体TEM图像。(h) 掺Ni的CsPbBr3纳米晶与本征CsPbBr3的XPS图谱。 (i,k)分别为NiBr2-doped、Ni(acac)2-doped CsPbBr3纳米晶的XRD图谱,在图的底部显示了斜方CsPbBr3结构。(j, l)分别为Ni(acac)2-doped、NiBr2-doped CsPbBr3纳米晶的高分辨XRD谱(110)(JCPDS No.18-0364)Figure 1. Structures and properties of LHPs. Absorption spectra and PL spectra of CsPbBr3 nanocrystals doped with NiBr2 (a, b) and Ni(acac)2 (c,d). (e, f, g) TEM images of Ni-doped and undoped CsPbBr3 nanocrystals. (h) XPS spectra of Ni-doped and undoped CsPbBr3 nanocrystals. (i, k) XRD patterns of NiBr2-doped, Ni(acac)2-doped and undoped CsPbBr3 nanocrystals. JCPDS No.18-0364 of the orthorhombic CsPbBr3 structure are indicated at the bottom of each figure. (j, l) High-resolution XRD spectra (110) of NiBr2-doped, Ni(acac)2-doped and undoped CsPbBr3 nanocrystals表 1 使用ICP-MS测试的掺杂含量Table 1. Doping content tested by ICP-MS乙酰丙酮镍掺杂 溴化镍掺杂 名义含量 实际含量* 名义含量 实际含量 5% 0.07 5% 0.11 10% 0.12 10% 0.14 12% 0.13 12% 0.17 15% 0.20 15% 0.21 20% 0.23 20% 0.25 *:表示ICP-MS测定的CsPb1−xNixBr3中Ni掺杂的实际含量 3.2 电子束辐照下钙钛矿样品的稳定性及离子迁移活化能表征
透射电镜具有纳米级的空间分辨率和毫秒级的时间分辨率,可以对离子的局部移动进行监测。此外,与其他表征方法相比,电子束与材料具有很强的相互作用。在透射电镜中,电子与材料相互作用的散射截面比X射线、中子衍射等要大得多,对材料的不均匀性和局部原子结构具有良好的敏感性。本文实验中,利用高分辨透射电子显微镜可以直接观察到由于离子在晶体中的扩散而引起的晶体分解。在相同的电子束辐照条件下,对不同掺杂剂的钙钛矿样品进行了研究。在电子束照射下,未掺杂的本征CsPbBr3纳米晶在1 min内开始出现明显的晶体分解。在可视范围内可以观察到,在电子束的作用下,晶体大约在10 s内分解成黑点和不稳定的成分。晶体从中心逐渐扩散到四周,在随后的1 min出现了明显分解。这是因为透射电子显微镜中的高能电子与样品中的原子发生碰撞,将能量传递给了钙钛矿晶体,驱使晶体中的原子从晶体位置移动。如图2(彩图见期刊电子版)所示,未掺杂的LHPs NCs在可见区域被电子束照射3 min后完全分解,这与钙钛矿的形成能较低和晶体中离子的迁移密切相关。实验结果表明,电子束辐照的效果与光辐照、加热和电场有很大的相似性[23,61-63]。在这些过程中,离子从外场获得能量,从而克服了离子迁移势垒,触发晶体分解。
与本征钙钛矿晶体相比,以溴化镍为掺杂剂合成得到的Ni2+掺杂钙钛矿晶体具有更强的电子辐照耐受性。经过3 min的照射后,只有晶格边缘被模糊化,晶体仍然保持最初的结构和形状。与本征卤化铅钙钛矿晶体不同,掺杂的钙钛矿样品在经过7 min的电子束辐照后,从外部到内部均有晶体损伤的迹象。这可能是由于掺杂晶体所需的破坏势垒相对于本征钙钛矿有所增加,由于LHPs NCs的表面缺陷浓度较大,晶体表面更容易被破坏。当电子能量从晶体外部传输到晶体内部时,晶体表面的能量要高于晶体内部。掺杂后晶体的离子迁移势垒增大,晶体会出现一个与缺陷密度和能量转移相一致的晶体分解过程。从图2可以看出,即使是辐照7 min后晶格形貌仍能保持原貌。因此,掺杂钙钛矿比本征钙钛矿具有更高的电子束耐受性。当晶体开始分解后,破坏速度会加快,经过大约13 min的辐照,钙钛矿晶体受到毁灭性的破坏。由此推断,当能量达到钙钛矿的破坏势垒后,能量的持续增加会加速晶体的分解。
钙钛矿材料中的离子迁移是一种普遍存在的现象,它是导致太阳能电池中光电流滞后和混合卤素钙钛矿发光峰移动的重要因素[64]。同时,它也对钙钛矿器件的长期稳定性等性能构成了潜在的威胁。而离子在全无机钙钛矿晶体中的迁移是由晶体中的卤素空位驱动的[15, 62]。离子迁移率(rm)与迁移活化能(Ea)的关系如下:
rm∝exp(Ea/(kBT)), (1) 这里的
$k_B$ 是玻尔兹曼常数,T是测试温度,$k_BT$ 代表热活化能。从式(1)可以看到,离子迁移率与温度密切相关,通过测量在暗态下随正向偏压而产生的温度和时间依赖的电流,可以确定晶体弛豫到平衡状态的速率,从而估算出器件弛豫的活化能。活化能测试结果见图3(彩图见期刊电子版)。图3(a)为测试实验的示意图,实验中,应用3V的偏压及两个平行电极之间为20 μm间距的叉指电极,产生电场诱导漂移的带电离子或缺陷。运用3V的偏压,加以8W/cm2的405 nm激光器对纳米晶薄膜进行变温电流-电压曲线测试。利用这种实验装置测试出电流-电压弛豫曲线,并提取两个时间常数[9, 13, 65]。图3(b)为不同温度下的暗电流测试曲线,图3(b)插图中横坐标为电流弛豫时间,纵坐标为暗电流的对数曲线(lnA),随着温度的升高,电流的驰豫时间变短,离子迁移的程度加重了。对图3(b)的暗电流曲线进行双指数拟合,提取出的时间常数,以测试温度的倒数为横坐标(1/T),驰豫时间倒数的对数为纵坐标(ln1/t),拟合数据满足线性关系的函数(图3(c)),其斜率为Ea/kB(公式1)。图3(c)为通过阿伦尼乌斯公式拟合得到的溴化镍掺杂CsPbBr3样品的离子迁移活化能。图3(d)为不同掺杂样品的活化能。从图3(d)可以看出,不同浓度的NiBr2掺杂样品的活化能从未掺杂的0.07 eV增加到0.487 eV,掺杂后离子的迁移被大大抑制。同时使用乙酰丙酮镍掺杂的样品的最大活化能可达0.238 eV。图 3 活化能测试示意图及测试结果。(a)活化能测试示意图,图中t1和t2指光电流和暗电流分别拟合得到的光/暗电流的驰豫时间。(b)不同温度暗电流变化(NiBr2掺杂10%),插图显示以电流弛豫时间为横坐标的半对数暗电流曲线(lnA)。(c)阿伦尼乌斯关系式活化能(Ea)计算结果。(d)不同掺杂样品的活化能 (x代表实际含量)Figure 3. Schematic diagram of activation energy test and test results. (a) Schematic diagram of activation energy test. t1 and t2 in the figure refer to the relaxation time of the light/dark currents fitted by the photocurrent and dark current, respectively. (b) The dark current changes at different temperatures (NiBr2 doping 10%). The inset shows the semilog dark current (lnA) curve as function with the current relaxation time. (c) Activation energy (Ea) caculated by formla (1). (d) Activation energy of different doped samples (x is the actual content)4. 理论和机制
通过在钙钛矿合成过程中引入过渡金属镍离子,以乙酰丙酮镍为前驱体,可使掺杂钙钛矿离子迁移活化能增加3.4倍,而使用溴化镍掺杂的钙钛矿晶体离子迁移活化能最大增加6.9倍。通过比较不同钙钛矿量子点样品在电子束下的稳定性,可以看出掺杂NCs后,电子束的耐受性均有很大的提高。在TEM测试过程中,由于未掺杂样品的晶体结构会在一分钟内被完全破坏,因此很难观察到它们的晶格条纹。而对于掺杂Ni2+的样品,则可以观察到其晶格条纹,在分别经过3 min(乙酰丙酮镍)和10 min(溴化镍)的电子束照射后,样品才显示出分解的迹象。这种实验现象的区别归因于掺杂过程中两种不同掺杂剂前驱体对化学合成过程的影响,最终导致钙钛矿纳米晶内部的化学环境发生了改变。使用乙酰丙酮镍作为前驱体合成掺杂钙钛矿样品能够在晶体中引入一个离子半径更小的Ni2+替代,使得合成的CsPbBr3掺杂晶体在电子束辐照下具有更高的稳定性,同时钙钛矿晶体中元素组成的改变导致卤素原子更好地被束缚在晶体中,Br−离子的迁移得到显著抑制(见图4(a))。
本工作还发现,在电子束辐照下,使用溴化镍为前驱体合成的CsPbBr3晶体具有相对更高的稳定性和更高的Br−离子迁移势垒。科学界很早就对全无机卤化物钙钛矿中的离子迁移现象开展过研究,研究表明离子迁移来自于卤素空位的迁移,晶体中的卤素空位浓度对离子迁移有巨大的影响[9,13-15,61,65]。使用溴化镍为前驱体合成的CsPbBr3晶体一方面通过引入Ni2+离子改变晶体中的化学环境,增强束缚溴原子的作用,另一方面,溴化镍作为前驱体,可以引入更多的卤素离子,填补了晶体中的部分卤素空位,减少了卤素离子的迁移路径,从而减少了钙钛矿中卤素离子的迁移(见图4(b))。因而在电子束辐照实验中,使用溴化镍掺杂的样品表现出了更高的稳定性,同时晶体中的离子迁移活化能也得到大幅的提升。
5. 结 论
本文系统研究了NiBr2掺杂和Ni(acac)2掺杂对钙钛矿NCs离子迁移的影响。结合离子迁移活化能和高分辨透射电镜原位表征发现,掺杂钙钛矿量子点的活化能明显增加,其中使用Ni(acac)2掺杂的样品活化能增加了3.4倍,使用NiBr2掺杂的样品活化能增加了6.9倍。同时,样品的电子束耐受力表现也有大幅提升,开始分解的时间分别为10 s内(未掺杂),3 min(乙酰丙酮镍),10 min(溴化镍)。虽然离子迁移活化能的增加与电子束耐受性之间的具体关系有待进一步研究。然而这一实验结果说明了掺杂能够抑制钙钛矿NCs内部的离子迁移,同时空位浓度也对钙钛矿稳定性有很大的影响。因此,选择适当的钙钛矿合成方法以及在合成过程中引入多重因素是未来提升钙钛矿稳定性的一个重要方法。利用这种新型的材料合成策略,有望获得更稳定、性能更理想的钙钛矿纳米结构,开发出更高性能光电器件,如钙钛矿激光器、发光二极管、X射线闪烁体等。
-
图 1 钙钛矿样品的结构和性能。(a, b)为溴化镍掺杂(NiBr2-doped)CsPbBr3纳米晶的吸收光谱和发射光谱。(c, d) 乙酰丙酮镍掺杂(Ni(acac)2-doped))CsPbBr3纳米晶吸收光谱和发射光谱。(e, f, g)分别为未掺杂,乙酰丙酮镍掺杂及溴化镍掺杂CsPbBr3纳米晶体TEM图像。(h) 掺Ni的CsPbBr3纳米晶与本征CsPbBr3的XPS图谱。 (i,k)分别为NiBr2-doped、Ni(acac)2-doped CsPbBr3纳米晶的XRD图谱,在图的底部显示了斜方CsPbBr3结构。(j, l)分别为Ni(acac)2-doped、NiBr2-doped CsPbBr3纳米晶的高分辨XRD谱(110)(JCPDS No.18-0364)
Figure 1. Structures and properties of LHPs. Absorption spectra and PL spectra of CsPbBr3 nanocrystals doped with NiBr2 (a, b) and Ni(acac)2 (c,d). (e, f, g) TEM images of Ni-doped and undoped CsPbBr3 nanocrystals. (h) XPS spectra of Ni-doped and undoped CsPbBr3 nanocrystals. (i, k) XRD patterns of NiBr2-doped, Ni(acac)2-doped and undoped CsPbBr3 nanocrystals. JCPDS No.18-0364 of the orthorhombic CsPbBr3 structure are indicated at the bottom of each figure. (j, l) High-resolution XRD spectra (110) of NiBr2-doped, Ni(acac)2-doped and undoped CsPbBr3 nanocrystals
图 3 活化能测试示意图及测试结果。(a)活化能测试示意图,图中t1和t2指光电流和暗电流分别拟合得到的光/暗电流的驰豫时间。(b)不同温度暗电流变化(NiBr2掺杂10%),插图显示以电流弛豫时间为横坐标的半对数暗电流曲线(lnA)。(c)阿伦尼乌斯关系式活化能(Ea)计算结果。(d)不同掺杂样品的活化能 (x代表实际含量)
Figure 3. Schematic diagram of activation energy test and test results. (a) Schematic diagram of activation energy test. t1 and t2 in the figure refer to the relaxation time of the light/dark currents fitted by the photocurrent and dark current, respectively. (b) The dark current changes at different temperatures (NiBr2 doping 10%). The inset shows the semilog dark current (lnA) curve as function with the current relaxation time. (c) Activation energy (Ea) caculated by formla (1). (d) Activation energy of different doped samples (x is the actual content)
表 1 使用ICP-MS测试的掺杂含量
Table 1. Doping content tested by ICP-MS
乙酰丙酮镍掺杂 溴化镍掺杂 名义含量 实际含量* 名义含量 实际含量 5% 0.07 5% 0.11 10% 0.12 10% 0.14 12% 0.13 12% 0.17 15% 0.20 15% 0.21 20% 0.23 20% 0.25 *:表示ICP-MS测定的CsPb1−xNixBr3中Ni掺杂的实际含量 -
[1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. doi: 10.1021/ja809598r [2] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237. doi: 10.1126/science.aaa9272 [3] SONG J ZH, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567 [4] LI X, BI D Q, YI CH Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294): 58-62. doi: 10.1126/science.aaf8060 [5] JEON N J, NA H, JUNG E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 2018, 3(8): 682-689. doi: 10.1038/s41560-018-0200-6 [6] JUNG E H, JEON N J, PARK E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)[J]. Nature, 2019, 567(7749): 511-515. doi: 10.1038/s41586-019-1036-3 [7] MOMBLONA C, GIL-ESCRIG L, BANDIELLO E, et al. Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers[J]. Energy &Environmental Science, 2016, 9(11): 3456-3463. [8] TAN H R, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326): 722-726. doi: 10.1126/science.aai9081 [9] TRESS W, MARINOVA N, MOEHL T, et al. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field[J]. Energy &Environmental Science, 2015, 8(3): 995-1004. [10] MCMEEKIN D P, SADOUGHI G, REHMAN W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells[J]. Science, 2016, 351(6269): 151-155. doi: 10.1126/science.aad5845 [11] CHEN M M, SHAN X, GESKE T, et al. Manipulating ion migration for highly stable light-emitting diodes with single-crystalline organometal halide perovskite microplatelets[J]. ACS Nano, 2017, 11(6): 6312-6318. doi: 10.1021/acsnano.7b02629 [12] DEQUILETTES D W, ZHANG W, BURLAKOV V M, et al. Photo-induced halide redistribution in organic-inorganic perovskite films[J]. Nature Communications, 2016, 7: 11683. doi: 10.1038/ncomms11683 [13] EAMES C, FROST J M, BARNES P R F, et al. Ionic transport in hybrid lead iodide perovskite solar cells[J]. Nature Communications, 2015, 6: 7497. doi: 10.1038/ncomms8497 [14] LI CH, GUERRERO A, HUETTNER S, et al. Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence[J]. Nature Communications, 2018, 9(1): 5113. doi: 10.1038/s41467-018-07571-6 [15] LAI M L, OBLIGER A, LU D, et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 11929-11934. doi: 10.1073/pnas.1812718115 [16] SHAO Y CH, FANG Y J, LI T, et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films[J]. Energy &Environmental Science, 2016, 9(5): 1752-1759. [17] YUN J S, SEIDEL J, KIM J, et al. Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells[J]. Advanced Energy Materials, 2016, 6(13): 1600330. doi: 10.1002/aenm.201600330 [18] YUAN Y B, CHAE J, SHAO Y CH, et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells[J]. Advanced Energy Materials, 2015, 5(15): 1500615. doi: 10.1002/aenm.201500615 [19] VASHISHTHA P, HALPERT J E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes[J]. Chemistry of Materials, 2017, 29(14): 5965-5973. doi: 10.1021/acs.chemmater.7b01609 [20] ZHANG H CH, FU X, TANG Y, et al. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals[J]. Nature Communications, 2019, 10(1): 1088. doi: 10.1038/s41467-019-09047-7 [21] CAO J, TAO SH X, BOBBERT P A, et al. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration[J]. Advanced Materials, 2018, 30(26): 1707350. doi: 10.1002/adma.201707350 [22] XING J, WANG Q, DONG Q F, et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals[J]. Physical Chemistry Chemical Physics, 2016, 18(44): 30484-30490. doi: 10.1039/C6CP06496E [23] CHEN SH L, ZHANG X W, ZHAO J J, et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite[J]. Nature Communications, 2018, 9(1): 4807. doi: 10.1038/s41467-018-07177-y [24] WEI D, MA F SH, WANG R, et al. Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells[J]. Advanced Materials, 2018, 30(31): 1707583. doi: 10.1002/adma.201707583 [25] ZHANG X Y, LU M, ZHANG Y, et al. PbS capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p-i-n structures[J]. ACS Central Science, 2018, 4(10): 1352-1359. doi: 10.1021/acscentsci.8b00386 [26] WANG CH J, CHESMAN A S R, JASIENIAK J J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid[J]. Chemical Communications, 2017, 53(1): 232-235. doi: 10.1039/C6CC08282C [27] LIN Y, BAI Y, FANG Y J, et al. Suppressed ion migration in low-dimensional perovskites[J]. ACS Energy Letters, 2017, 2(7): 1571-1572. doi: 10.1021/acsenergylett.7b00442 [28] WANG X, LING Y CH, LIAN X J, et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices[J]. Nature Communications, 2019, 10(1): 695. doi: 10.1038/s41467-019-08610-6 [29] XING J, ZHAO Y B, ASKERKA M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes[J]. Nature Communications, 2018, 9(1): 3541. doi: 10.1038/s41467-018-05909-8 [30] ZOU SH H, LIU Y SH, LI J H, et al. Stabilizing cesium lead halide perovskite lattice through MN(Ⅱ) substitution for air-stable light-emitting diodes[J]. Journal of the American Chemical Society, 2017, 139(33): 11443-11450. doi: 10.1021/jacs.7b04000 [31] PAROBEK D, ROMAN B J, DONG Y T, et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J]. Nano Letters, 2016, 16(12): 7376-7380. doi: 10.1021/acs.nanolett.6b02772 [32] BI CH H, WANG SH X, LI Q, et al. Thermally stable copper(Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 943-952. doi: 10.1021/acs.jpclett.9b00290 [33] YUAN X, JI S H, DE SIENA M C, et al. Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration[J]. Chemistry of Materials, 2017, 29(18): 8003-8011. doi: 10.1021/acs.chemmater.7b03311 [34] YAO J S, GE J, HAN B N, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes[J]. Journal of the American Chemical Society, 2018, 140(10): 3626-3634. doi: 10.1021/jacs.7b11955 [35] PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties[J]. Nano Letters, 2017, 17(12): 8005-8011. doi: 10.1021/acs.nanolett.7b04575 [36] HU Y Q, BAI F, LIU X B, et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells[J]. ACS Energy Letters, 2017, 2(10): 2219-2227. doi: 10.1021/acsenergylett.7b00508 [37] SAIDAMINOV M I, KIM J, JAIN A, et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air[J]. Nature Energy, 2018, 3(8): 648-654. doi: 10.1038/s41560-018-0192-2 [38] LIU W Y, LIN Q L, LI H B, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American Chemical Society, 2016, 138(45): 14954-14961. doi: 10.1021/jacs.6b08085 [39] YONG Z J, GUO SH Q, MA J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield[J]. Journal of the American Chemical Society, 2018, 140(31): 9942-9951. doi: 10.1021/jacs.8b04763 [40] ZHANG X T, WANG H, HU Y, et al. Strong blue emission from Sb3+-doped super small CsPbBr3 nanocrystals[J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1750-1756. doi: 10.1021/acs.jpclett.9b00790 [41] MONDAL N, DE A, SAMANTA A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals[J]. ACS Energy Letters, 2019, 4(1): 32-39. doi: 10.1021/acsenergylett.8b01909 [42] BEHERA R K, DAS ADHIKARI S, DUTTA S K, et al. Blue-emitting CsPbCl3 nanocrystals: impact of surface passivation for unprecedented enhancement and loss of optical emission[J]. The Journal of Physical Chemistry Letters, 2018, 9(23): 6884-6891. doi: 10.1021/acs.jpclett.8b03047 [43] KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358(6364): 745-750. doi: 10.1126/science.aam7093 [44] AKKERMAN Q A, RAINÒ G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nature Materials, 2018, 17(5): 394-405. doi: 10.1038/s41563-018-0018-4 [45] KIM G Y, SENOCRATE A, YANG T Y, et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition[J]. Nature Materials, 2018, 17(5): 445-449. doi: 10.1038/s41563-018-0038-0 [46] CALADO P, TELFORD A M, BRYANT D, et al. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis[J]. Nature Communications, 2016, 7: 13831. doi: 10.1038/ncomms13831 [47] ZHU X Y, PODZOROV V. Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons[J]. The Journal of Physical Chemistry Letters, 2015, 6(23): 4758-4761. doi: 10.1021/acs.jpclett.5b02462 [48] MIYATA K, MEGGIOLARO D, TRINH M T, et al. Large polarons in lead halide perovskites[J]. Science Advances, 2017, 3(8): 1701217. doi: 10.1126/sciadv.1701217 [49] MAHATA A, MEGGIOLARO D, DE ANGELIS F. From large to small polarons in lead, tin, and mixed lead-tin halide perovskites[J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1790-1798. doi: 10.1021/acs.jpclett.9b00422 [50] PARK M, NEUKIRCH A J, REYES-LILLO S E, et al. Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite[J]. Nature Communications, 2018, 9: 2525. doi: 10.1038/s41467-018-04946-7 [51] BEAULAC R, SCHNEIDER L, ARCHER P I, et al. Light-induced spontaneous magnetization in doped colloidal quantum dots[J]. Science, 2009, 325(5943): 973-976. doi: 10.1126/science.1174419 [52] HOFFMAN D M, MEYER B K, EKIMOV A I, et al. Giant internal magnetic fields in Mn doped nanocrystal quantum dots[J]. Solid State Communications, 2000, 114(10): 547-550. doi: 10.1016/S0038-1098(00)00089-2 [53] 符靓, 施树云, 陈晓青. 电感耦合等离子体-质谱法测定高纯四甲基氢氧化铵中超痕量金属元素[J]. 分析化学,2018,46(1):107-112.FU L, SHI SH Y, CHEN X Q. Ultra-trace metal elements analysis of high purity tetramethylammonium hydroxide using inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(1): 107-112. (in Chinese) [54] 陈文, 樊小伟, 郭才女, 等. 电感耦合等离子体串联质谱法测定高纯稀土中铁的含量[J]. 分析化学,2019,47(3):403-409.CHEN W, FAN X W, GUO C N, et al. Determination of iron content in high purity rare earth by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 403-409. (in Chinese) [55] WANG Y Y, WU M W. Control of spin coherence in semiconductor double quantum dots[J]. Physical Review B, 2008, 77(12): 125323. doi: 10.1103/PhysRevB.77.125323 [56] HUANG G G, WANG CH L, XU SH H, et al. Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange[J]. Advanced Materials, 2017, 29(29): 1700095. doi: 10.1002/adma.201700095 [57] XU K Y, LIN CH CH, XIE X B, et al. Efficient and stable luminescence from Mn2+ in core and core-isocrystalline shell CsPbCl3 perovskite nanocrystals[J]. Chemistry of Materials, 2017, 29(10): 4265-4272. doi: 10.1021/acs.chemmater.7b00345 [58] LIU M, ZHONG G H, YIN Y M, et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight[J]. Advanced Science, 2017, 4(11): 1700335. doi: 10.1002/advs.201700335 [59] ZHOU D L, LIU D L, PAN G CH, et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells[J]. Advanced Materials, 2017, 29(42): 1704149. doi: 10.1002/adma.201704149 [60] 尹子辰, 王彦玲, 张传保. 羟丙基胍胶在高岭土上的吸附性质研究[J]. 分析化学,2019,47(1):93-98.YIN Z CH, WANG Y L, ZHANG CH B. Study of adsorption behavior of hydroxypropyl guar gum on kaolin[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 93-98. (in Chinese) [61] ISHIKAWA R, MISHRA R, LUPINI A R, et al. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch[J]. Physical Review Letters, 2014, 113(15): 155501. doi: 10.1103/PhysRevLett.113.155501 [62] BRENNAN M C, DRAGUTA S, KAMAT P V, et al. Light-induced anion phase segregation in mixed halide perovskites[J]. ACS Energy Letters, 2018, 3(1): 204-213. doi: 10.1021/acsenergylett.7b01151 [63] LI W, ROTHMANN M U, LIU A, et al. Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells[J]. Advanced Energy Materials, 2017, 7(20): 1700946. doi: 10.1002/aenm.201700946 [64] MIZUSAKI J, ARAI K, FUEKI K. Ionic conduction of the perovskite-type halides[J]. Solid State Ionics, 1983, 11(3): 203-211. doi: 10.1016/0167-2738(83)90025-5 [65] O’REGAN B C, BARNES P R F, LI X E, et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J-V hysteresis[J]. Journal of the American Chemical Society, 2015, 137(15): 5087-5099. doi: 10.1021/jacs.5b00761 期刊类型引用(3)
1. 吉于今,楚学影,董旭,李金华. 紫外偏振敏感的CsPbBr_3纳米薄膜的可见光发射(英文). 中国光学(中英文). 2023(01): 202-213 . 百度学术
2. 刘鑫妍,孙冠伟,刘喆,孟凡源,苏仕健. 有机添加剂在钙钛矿电致发光器件中的应用. 液晶与显示. 2021(01): 149-157 . 百度学术
3. 丁楠,王楠,刘森,王玥,周东磊,徐文,宋宏伟. 掺杂卤化物钙钛矿材料研究进展. 激光与光电子学进展. 2021(15): 138-157 . 百度学术
其他类型引用(1)
-