留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EBCMOS近贴聚焦结构及电场分布对电子运动轨迹的影响

王巍 李野 陈卫军 宋德 王新

王巍, 李野, 陈卫军, 宋德, 王新. EBCMOS近贴聚焦结构及电场分布对电子运动轨迹的影响[J]. 中国光学(中英文), 2020, 13(4): 713-721. doi: 10.37188/CO.2020-0063
引用本文: 王巍, 李野, 陈卫军, 宋德, 王新. EBCMOS近贴聚焦结构及电场分布对电子运动轨迹的影响[J]. 中国光学(中英文), 2020, 13(4): 713-721. doi: 10.37188/CO.2020-0063
WANG Wei, LI Ye, CHEN Wei-jun, SONG De, WANG Xin. Influence of proximity focusing structure and electric field distribution on electron trajectory in the EBCMOS[J]. Chinese Optics, 2020, 13(4): 713-721. doi: 10.37188/CO.2020-0063
Citation: WANG Wei, LI Ye, CHEN Wei-jun, SONG De, WANG Xin. Influence of proximity focusing structure and electric field distribution on electron trajectory in the EBCMOS[J]. Chinese Optics, 2020, 13(4): 713-721. doi: 10.37188/CO.2020-0063

EBCMOS近贴聚焦结构及电场分布对电子运动轨迹的影响

基金项目: 国家自然科学基金资助项目(No.11874091);吉林省科技厅重点科技研发项目(No.20180201034GX)
详细信息
    作者简介:

    王 巍(1983—),女,吉林和龙人,理学硕士,助理研究员,2011年于长春理工大学获得硕士学位,现在长春工业大学工作,主要从事光电成像器件与系统方面的研究。E-mail:wangwei83@ccut.edu.cn

    李 野(1969—),男,吉林镇赉人,理学博士,教授,2011年于长春理工大学获得博士学位,主要从事光电成像器件与系统方面的研究。E-mail:liyecust@163.com

    宋 德(1981—),男,吉林靖宇人,理学博士,副教授,2009年于中国科学院长春应用化学研究所获得博士学位,现在长春理工大学工作。主要从事光电成像器件与系统方面的研究。E-mail:songde614@163.com

    通讯作者:

    liyecust@163.com

    songde614@163.com

  • 中图分类号: TN223

Influence of proximity focusing structure and electric field distribution on electron trajectory in the EBCMOS

Funds: Supported by National Natural Science Foundation of China (No. 11874091); Key Scientific and Technological Project of Science and Technology Department of Jilin Province (No. 20180201034GX)
More Information
  • 摘要: 为获得高分辨率的电子轰击型CMOS (EBCMOS)成像器件,本文就近贴聚焦结构内电场分布对电子运动轨迹的影响进行了研究。设计了不同的EBCMOS结构并得到3种电场分布情况,分别为光电阴极和背面轰击型CMOS (BSB-CMOS)之间的等势面不平行、部分平行和彼此平行。根据电磁学理论结合蒙特卡洛模拟方法,分别模拟了每种电场分布情况下的电子运动轨迹。研究结果表明:当设计的电子倍增层表面覆盖一层30 nm的超薄重掺杂层,保持极间电压为4000 V且极间距为1 mm时,光生电子轰击BSB-CMOS表面时扩散直径可减小至30 μm。此结构具有电子聚焦作用,有助于实现高分辨率的EBCMOS。同时,进一步研究了光电阴极与BSB-CMOS之间的距离和电压对电子扩散直径的影响。研究发现,近贴间距越小、加速电压越高,相应的电场强度就越高,越有利于电子聚焦。本文工作将为改进电子轰击型CMOS成像器件的分辨率特性提供理论指导。

     

  • 图 1  电场作用下电子运动轨迹变化示意图

    Figure 1.  Schematic diagram of changes in a photoelectron trajectory caused by the electric field

    图 2  (a) 光电阴极与BSB-CMOS间的等势面不平行时EBCMOS近贴聚焦结构模型示意图及(b) 光电阴极与BSB-CMOS之间的电场分布模拟图

    Figure 2.  (a) Schematic diagram of the EBCMOS model with the proximity focusing structure when the equipotential surfaces between the photocathode and BSB-CMOS are not parallel and (b) electrostatic distribution between the photocathode and BSB-CMOS

    图 3  无电场时的电子运动轨迹模拟图。内图为轰击BSB-CMOS表面的光电子分布图(扩散范围超过0.1 mm2

    Figure 3.  Simulation of electron trajectories in the absence of electric fields. Inset figure is the distribution diagram of photoelectrons bombarding the surface of BSB-CMOS (scattered over an area exceeding 0.1 mm2)

    图 4  (a)光电阴极与BSB-CMOS间的等势面部分平行时EBCMOS近贴聚焦结构模型示意图及 (b)光电阴极与BSB-CMOS之间的电场分布模拟图

    Figure 4.  (a) Schematic diagram of the EBCMOS model with the proximity focusing structure when the equipotential surfaces between the photocathode and BSB-CMOS are partially parallel and (b) electrostatic distribution between the photocathode and BSB-CMOS

    图 5  BSB-CMOS表面入射光电子分布图。(a)图4(b)A位置所产生的光电子;(b)光电阴极表面中心位置所产生的光电子(内图:电子运动轨迹的三维模拟图)

    Figure 5.  Distribution diagram of photoelectrons bombarding the surface of BSB-CMOS. (a) Photoelectrons generated at the position A shown in Figure 4(b); (b) photoelectrons generated at the center of photocathode surface. (Inset figures: 3-D simulation diagram of electron trajectories)

    图 6  (a)光电阴极与BSB-CMOS间的等势面平行时EBCMOS近贴聚焦结构模型示意图及 (b)光电阴极与BSB-CMOS之间的电场分布模拟图

    Figure 6.  (a) Schematic diagram of the EBCMOS model with the proximity focusing structure when the equipotential surfaces between the photocathode and the BSB-CMOS are parallel and (b) electrostatic distribution between the photocathode and BSB-CMOS

    图 7  电子运动轨迹三维模拟图。内图为BSB-CMOS表面入射光电子分布图(扩散形成直径约为30 µm的圆)

    Figure 7.  3D simulation diagram of electron trajectories. Inset figure is the distribution of photoelectrons bombarding the surface of BSB-CMOS (scattered into a circle with diameter of approximate 30 µm)

    图 8  光电阴极与BSB-CMOS间距不同时,BSB-CMOS表面入射光电子分布图

    Figure 8.  Distribution diagrams of photoelectrons bombarding the surface of BSB-CMOS at different distances between photocathode and BSB-CMOS

    图 9  光电阴极与BSB-CMOS之间电压不同时,BSB-CMOS表面入射光电子分布图

    Figure 9.  Distribution diagrams of photoelectrons bombarding the surface of BSB-CMOS when the voltage between photocathode and BSB-CMOS is changed

  • [1] 金伟其, 陶禹, 石峰, 等. 微光视频器件及其技术的进展[J]. 红外与激光工程,2015,44(11):3167-3176. doi: 10.3969/j.issn.1007-2276.2015.11.001

    JIN W Q, TAO Y, SHI F, et al. Progress of low level light video technology[J]. Infrared and Laser Engineering, 2015, 44(11): 3167-3176. (in Chinese) doi: 10.3969/j.issn.1007-2276.2015.11.001
    [2] 郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术,2013,35(2):63-68.

    GUO H, XIANG SH M, TIAN M Q. A review of the development of low-light night vision technology[J]. Infrared Technology, 2013, 35(2): 63-68. (in Chinese)
    [3] QI L, JUST F, LEUCHS G, et al. Autonomous absolute calibration of an ICCD camera in single-photon detection regime[J]. Optics Express, 2016, 24(23): 26444-26453. doi: 10.1364/OE.24.026444
    [4] TORR M R, TORR D G, BAUM R, et al. Intensified-CCD focal plane detector for space applications: a second generation[J]. Applied Optics, 1986, 25(16): 2768-2777. doi: 10.1364/AO.25.002768
    [5] BRUGIÈRE T, MAYER F, FEREYRE P, et al. First measurement of the in-pixel electron multiplying with a standard imaging CMOS technology: Study of the EMCMOS concept[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2015, 787: 336-339. doi: 10.1016/j.nima.2015.01.065
    [6] ROBBINS M S, HADWEN B J. The noise performance of electron multiplying charge-coupled devices[J]. IEEE Transactions on Electron Devices, 2003, 50(5): 1227-1232. doi: 10.1109/TED.2003.813462
    [7] HIRVONEN L M, JIGGINS S, SERGENT N, et al. Photon counting imaging with an electron-bombarded CCD: Towards wide-field time-correlated single photon counting (TCSPC)[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2015, 787: 323-327. doi: 10.1016/j.nima.2015.01.031
    [8] 朱敏, 田进寿, 温文龙, 等. 基于电子轰击式CCD的大动态条纹相机研究[J]. 物理学报,2015,64(9):098501. doi: 10.7498/aps.64.098501

    ZHU M, TIAN J SH, WEN W L, et al. Research on large dynamic range streak camera based on electron-bombarded CCD[J]. Acta Physica Sinica, 2015, 64(9): 098501. (in Chinese) doi: 10.7498/aps.64.098501
    [9] HIRVONEN L M, SUHLING K. Photon counting imaging with an electron-bombarded pixel image sensor[J]. Sensors, 2016, 16(5): 617. doi: 10.3390/s16050617
    [10] 刘虎林, 王兴, 田进寿, 等. 高分辨紫外电子轰击互补金属氧化物半导体器件的实验研究[J]. 物理学报,2018,67(1):014209. doi: 10.7498/aps.67.20171729

    LIU H L, WANG X, TIAN J SH, et al. High resolution electron bombareded complementary metal oxide semiconductor sensor for ultraviolet detection[J]. Acta Physica Sinica, 2018, 67(1): 014209. (in Chinese) doi: 10.7498/aps.67.20171729
    [11] AEBI V W, COSTELLO K A, ARCUNI P W, et al.. EBAPS: Next generation, low power, digital night vision[C]. Presented at the OPTRO 2005 International Symposium, OPTRO, 2005: 1-10.
    [12] AEBI V W, BOYLE J J. Electron bombarded active pixel sensor: US, 6285018B1[P]. 2001-09-04.
    [13] BARBIER R, DEPASSE P, BAUDOT J, et al.. First Results from the development of a new generation of hybrid photon detector: EBCMOS[C]. Proceedings of the 10th Conference on Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications, World Scientific, 2008: 23-27.
    [14] CAJGFINGER T, DOMINJON A, BARBIER R. Single photon detection and localization accuracy with an EBCMOS camera[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2015, 787: 176-181.
    [15] DOMINJON A, CHABANAT E, DEPASSE P, et al.. LUSIPHER large-scale ultra-fast single photo-electron tracker[C]. 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), IEEE, 2009: 1527-1531.
    [16] 宋德, 朴雪, 拜晓锋, 等. 近贴型像增强器中微通道板输入端电场模拟研究[J]. 红外与激光工程,2015,44(10):2981-2986. doi: 10.3969/j.issn.1007-2276.2015.10.019

    SONG D, PIAO X, BAI X F, et al. Simulation research of electrostatic field of MCP input in proximity image intensifier[J]. Infrared and Laser Engineering, 2015, 44(10): 2981-2986. (in Chinese) doi: 10.3969/j.issn.1007-2276.2015.10.019
    [17] 宋德, 石峰, 李野. 基底均匀掺杂下EBAPS电荷收集效率的模拟研究[J]. 红外与激光工程,2016,45(2):0203002. doi: 10.3788/irla201645.0203002

    SONG D, SHI F, LI Y. Simulation of charge collection efficiency for EBAPS with uniformly doped substrate[J]. Infrared and Laser Engineering, 2016, 45(2): 0203002. (in Chinese) doi: 10.3788/irla201645.0203002
    [18] BARBIER R, CAJGFINGER T, CALABRIA P, et al. A single-photon sensitive ebCMOS camera: The LUSIPHER prototype[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2011, 648(1): 266-274.
  • 加载中
图(9)
计量
  • 文章访问数:  2173
  • HTML全文浏览量:  665
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 修回日期:  2020-06-08
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回