留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺铒光纤Sagnac环掺铒光纤放大器增益平坦特性

刘毅 郭荣荣 易小刚 郑永秋 陈鹏飞

刘毅, 郭荣荣, 易小刚, 郑永秋, 陈鹏飞. 掺铒光纤Sagnac环掺铒光纤放大器增益平坦特性[J]. 中国光学(中英文), 2020, 13(5): 988-994. doi: 10.37188/CO.2020-0064
引用本文: 刘毅, 郭荣荣, 易小刚, 郑永秋, 陈鹏飞. 掺铒光纤Sagnac环掺铒光纤放大器增益平坦特性[J]. 中国光学(中英文), 2020, 13(5): 988-994. doi: 10.37188/CO.2020-0064
LIU Yi, GUO Rong-rong, YI Xiao-gang, ZHENG Yong-qiu, CHEN Peng-fei. Erbium-doped fiber amplifier gain-flatness of a Sagnac loop with an erbium-doped fiber[J]. Chinese Optics, 2020, 13(5): 988-994. doi: 10.37188/CO.2020-0064
Citation: LIU Yi, GUO Rong-rong, YI Xiao-gang, ZHENG Yong-qiu, CHEN Peng-fei. Erbium-doped fiber amplifier gain-flatness of a Sagnac loop with an erbium-doped fiber[J]. Chinese Optics, 2020, 13(5): 988-994. doi: 10.37188/CO.2020-0064

掺铒光纤Sagnac环掺铒光纤放大器增益平坦特性

基金项目: 国家自然科学基金青年项目(No. 61705157,No. 61404140403,No. 61805167);国家自然科学基金面上项目(No. 61975142,No. 61475112);山西省回国留学人员科研资助项目(No. 2017-key-2);山西省重点研发计划项目(No. 201903D121124)
详细信息
    作者简介:

    刘 毅(1984—),男,山西长治人,博士,副教授,2007年、2010年于中北大学分别获得学士学位、硕士学位,2014年于天津大学获得博士学位,主要从事光纤激光器和光纤传感方面的研究。E-mail:liuyi@tyut.edu.cnliuyi@tyut.edu.cn

    郭荣荣(1991—),女,山西孝义人,硕士研究生,2015年于太原理工大学获得学士学位,主要从事光纤激光器和光纤传感方面的研究。E-mail:guorr212@163.com

  • 中图分类号: O433.4

Erbium-doped fiber amplifier gain-flatness of a Sagnac loop with an erbium-doped fiber

Funds: Supported by National Natural Science Foundation of China for Distinguished Young Scholars (No. 61705157, No. 61404140403, No.61805167); National Natural Science Foundation of China (No. 61975142, No. 61475112); Research Project Supported by Shanxi Scholarship Council of China (No. 2017-key-2); Key Research and Development (R&D) Projects of Shanxi Province (No. 201903D121124)
More Information
  • 摘要: 在通信领域,特别是波分复用方面,为了同时调整多通道增益和实现多波长光纤激光器大范围稳定的光波输出,本文提出了一种未泵浦掺铒光纤Sagnac环透射端掺铒光纤放大器增益平坦特性研究方案,其由Sagnac环自身谐振模式、未泵浦掺铒光纤的吸收特性和由环中双折射拍长引起的谐振模式3者共同作用。通过调节Sagnac环中的偏振控制器,使得掺铒光纤放大器(EDFA)增益光谱在非泵浦掺铒光纤Sagnac环透射端可以被部分或者全部平坦化。实验结果表明:在透射端14 nm的波长范围内,部分增益光谱的平坦度为±0.145 dB;整个C波段光谱36.5 nm的波长范围内,增益光谱的完全平坦度为±1.225 dB。该增益谱平坦方案结构简单,输出光谱平坦度好,有望用于波分复用系统和多波长激光器中。

     

  • 图 1  EDFA增益平坦实验装置图及示意图

    Figure 1.  Experimental setup and schematic diagram of the gain-flattened EDFA

    图 2  EDFA增益谱平坦原理图

    Figure 2.  Schematic diagram of the gain-flattened for EDFA

    图 3  不同泵浦功率下的EDF吸收曲线

    Figure 3.  Absorption of the EDF at different pump powers and ASE gain spectra

    图 4  不同泵浦功率下,透射端EDFA增益光谱部分平坦前后对比图

    Figure 4.  Comparison diagram of EDFA spectra before and after flattening partially at transmission port with different pump powers

    图 5  透射端EDFA增益光谱全部平坦前后对比图

    Figure 5.  Comparison of EDFA spectra before and after complete flattening at transmission port

    图 6  120 mW下透射端功率损耗量化结果

    Figure 6.  Quantified results of transmission power loss at 120 mW

  • [1] MEARS R J, REEKIE L, JAUNCEY I M, et al. Low-noise erbium-doped fibre amplifier operating at 1.54 μm[J]. Electronics Letters, 1987, 23(19): 1026-1028. doi: 10.1049/el:19870719
    [2] SRIVASTAVA A K, SUN Y, ZYSKIND J L, et al. EDFA transient response to channel loss in WDM transmission system[J]. IEEE Photonics Technology Letters, 1997, 9(3): 386-388. doi: 10.1109/68.556082
    [3] YANG A, WANG T, ZHENG J Q, et al. A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator[J]. Laser Physics Letters, 2019, 16(9): 025104.
    [4] YANG Z Q, HUANG T J, CHANG Y J, et al. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber[J]. Laser Physics, 2018, 28(6): 065104. doi: 10.1088/1555-6611/aab655
    [5] HUI X L, LIN R J. Gain efficient L-band EDFA with dynamic gain equalization[J]. Acta Optica Sinica, 2003, 23(S1): 355-356.
    [6] ZHANG L, ZHAN L, et al. Large-region tunable optical bistability in saturable absorber-based single-frequency Brillouin fiber lasers[J]. Journal of the Optical Society of America B, 2015, 32(6): 1113-1119. doi: 10.1364/JOSAB.32.001113
    [7] 颜玢玢, 王葵如, 余重秀, 等. 增益平坦的多波长泵浦宽带拉曼光纤放大器[J]. 光学 精密工程,2006,14(2):155-158.

    YAN B B, WANG K R, YU CH X, et al. Broadband gain-flattened multiwavelength pumped Raman fiber amplifier[J]. Optics and Precision Engineering, 2006, 14(2): 155-158. (in Chinese)
    [8] 聂玲, 饶云江, 廖天奎. 掺铒光纤放大器自动增益控制的DSP实现方法[J]. 光学 精密工程,2004,12(3):108-110.

    NIE L, RAO Y J, LIAO T K. Automatic gain control of EDFAs using DSP[J]. Optics and Precision Engineering, 2004, 12(3): 108-110. (in Chinese)
    [9] 赵小丽, 张钰民, 庄炜, 等. 级联光栅结合Sagnac环的可调谐光纤激光器[J]. 发光学报,2019,40(3):357-365. doi: 10.3788/fgxb20194003.0357

    ZHAO X L, ZHANG Y M, ZHUANG W, et al. Tunable fiber laser based on cascaded grating combing with Sagnac loop[J]. Chinese Journal of Luminescence, 2019, 40(3): 357-365. (in Chinese) doi: 10.3788/fgxb20194003.0357
    [10] WANG P H, WANG L, SHI G H, et al. Stable multi-wavelength fiber laser with single-mode fiber in a Sagnac loop[J]. Applied Optics, 2016, 55(12): 3339-3342. doi: 10.1364/AO.55.003339
    [11] SONG Y J, ZHAN L, HU S, et al. Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter[J]. IEEE Photonics Technology Letters, 2004, 16(9): 2015-2017. doi: 10.1109/LPT.2004.833097
    [12] GUO CH Y, LUO R H, LIU W Q, et al. Comb multi-wavelength, rectangular pulse, passively mode-locked fiber laser enhanced by un-pumped Erbium-doped fiber[J]. Optics Communications, 2018, 406: 107-111. doi: 10.1016/j.optcom.2017.07.080
    [13] HE W, ZHU L Q, MENG F Y, et al. Selectable and stable C-band multi-wavelength ring cavity erbium-doped fiber laser employing Sagnac loop and tunable filter[J]. Optik, 2019, 176: 528-534. doi: 10.1016/j.ijleo.2018.09.063
    [14] ROTA-RODRIGO S, IBAÑEZ I, LÓPEZ-AMO M. Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer[J]. Applied Physics B, 2013, 110(3): 303-308. doi: 10.1007/s00340-012-5325-x
    [15] CHEN D. Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter[J]. Laser Physics Letters, 2007, 4(6): 437-439. doi: 10.1002/lapl.200710003
    [16] 车永康, 侯尚林, 雷景丽, 等. 高非线性光纤中受激布里渊散射快光提前及脉冲形变[J]. 发光学报,2017,38(8):1083-1089. doi: 10.3788/fgxb20173808.1083

    CHE Y K, HOU SH L, LEI J L, et al. Time advancement and pulse distort of stimulated Brillouin scattering fast light high nonlinear optical fibers[J]. Chinese Journal of Luminescence, 2017, 38(8): 1083-1089. (in Chinese) doi: 10.3788/fgxb20173808.1083
    [17] HUANG F Q, CHEN T, SI J H, et al. Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing[J]. Optics Communications, 2019, 452: 233-237. doi: 10.1016/j.optcom.2019.05.046
    [18] ZHANG K, KANG J U. C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser[J]. Optics Express, 2008, 16(18): 14173-14179. doi: 10.1364/OE.16.014173
    [19] LIU Y, ZHANG M J, WANG P, et al. Multiwavelength single-longitudinal-mode Brillouin- erbium fiber laser sensor for temperature measurements with ultrahigh resolution[J]. IEEE Photonics Journal, 2015, 7(5): 6802809.
    [20] 石俊凯, 王国名, 纪荣祎, 等. 结构紧凑的双波长连续波掺铒光纤激光器[J]. 中国光学,2019,12(4):810-819. doi: 10.3788/co.20191204.0810

    SHI J K, WANG G M, JI R Y, et al. Compact dual-wavelength continuous-wave Er-doped fiber laser[J]. Chinese Optics, 2019, 12(4): 810-819. (in Chinese) doi: 10.3788/co.20191204.0810
    [21] 况庆强, 桑明煌, 梁培斯, 等. 光纤中超连续谱的产生及多波长输出[J]. 发光学报,2010,31(1):137-140.

    KUANG Q Q, SANG M H, LIANG P S, et al. Supercontinuum generation and multi-wavelength output in fiber[J]. Chinese Journal of Luminescence, 2010, 31(1): 137-140. (in Chinese)
    [22] KUMAR N, SHENOY M R, PAL B P. A standard fiber-based loop mirror as a gain-flattening filter for erbium-doped fiber amplifiers[J]. IEEE Photonics Technology Letters, 2005, 17(10): 2056-2058. doi: 10.1109/LPT.2005.856323
    [23] YEH C H, YANG Z Q, HUANG T J, et al. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser[J]. Optics Communications, 2018, 410: 923-925. doi: 10.1016/j.optcom.2017.11.074
    [24] LI SH P, CHIANG K S, GAMBLING W A. Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror[J]. IEEE Photonics Technology Letters, 2001, 13(9): 942-944. doi: 10.1109/68.942654
    [25] LIU Y, YU J L, WANG W R, et al. Single longitudinal mode brillouin fiber laser with cascaded ring Fabry–Pérot resonator[J]. IEEE Photonics Technology Letters, 2014, 26(2): 169-172. doi: 10.1109/LPT.2013.2290191
    [26] LI L, ZHANG M J, LIU Y, et al. Stable single-longitudinal-mode erbium-doped fiber laser with narrow linewidth utilizing parallel fiber ring resonator incorporating saturable absorber and fiber Bragg grating[J]. Applied Optics, 2015, 54(13): 4001-4005. doi: 10.1364/AO.54.004001
    [27] MORTIMOR D B. Fiber loop reflectors[J]. Lightwave Technology Journal, 1998, 6(7): 1217-1224.
    [28] 贾振安, 李丽, 乔学光, 等. 高平坦度的三级双泵浦结构C+L波段超荧光光源[J]. 光学 精密工程,2010,18(3):558-562.

    JIA ZH A, LI L, QIAO X G, et al. High flattening C+L-band erbium-doped superfluorescent light source with three-stage two-pumping structure[J]. Optics and Precision Engineering, 2010, 18(3): 558-562. (in Chinese)
    [29] ZOU H, LOU SH Q, YIN G L, et al. Switchable dual-wavelength PM-EDF ring laser based on a novel filter[J]. IEEE Photonics Technology Letters, 2013, 25(11): 1003-1006. doi: 10.1109/LPT.2013.2253453
  • 加载中
图(6)
计量
  • 文章访问数:  1913
  • HTML全文浏览量:  466
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 修回日期:  2020-06-08
  • 网络出版日期:  2020-09-15
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回