留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shift of the first ionization threshold of Sm atom in electric field

XU Zhao-jin ZHANG Xiao-hu ZHANG Wen-na HUANG Chao-hong SHEN Li

许照锦, 张小虎, 张文纳, 黄朝宏, 沈礼. 电场中Sm原子的第一电离阈移动[J]. 中国光学(中英文), 2020, 13(6): 1385-1400. doi: 10.37188/CO.2020-0071
引用本文: 许照锦, 张小虎, 张文纳, 黄朝宏, 沈礼. 电场中Sm原子的第一电离阈移动[J]. 中国光学(中英文), 2020, 13(6): 1385-1400. doi: 10.37188/CO.2020-0071
XU Zhao-jin, ZHANG Xiao-hu, ZHANG Wen-na, HUANG Chao-hong, SHEN Li. Shift of the first ionization threshold of Sm atom in electric field[J]. Chinese Optics, 2020, 13(6): 1385-1400. doi: 10.37188/CO.2020-0071
Citation: XU Zhao-jin, ZHANG Xiao-hu, ZHANG Wen-na, HUANG Chao-hong, SHEN Li. Shift of the first ionization threshold of Sm atom in electric field[J]. Chinese Optics, 2020, 13(6): 1385-1400. doi: 10.37188/CO.2020-0071

电场中Sm原子的第一电离阈移动

详细信息
  • 中图分类号: O433.1;O433.2

Shift of the first ionization threshold of Sm atom in electric field

doi: 10.37188/CO.2020-0071
Funds: Supported by National Natural Science Foundation of China (No. 11604243); Program for Innovative Research Team in University of Tianjin (No. TD3-5029); National Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201810060026)
More Information
    Author Bio:

    Xu Zhaojin (1978—), male, born in Minhou, Fujian. He is an associate professor with a master’s degree. In 2005, he received his master's degree from Nankai University. Now he is an associate professor of the School of Science, Tianjin University of Technology, mainly engaged in the research of spectroscopy and its application. E-mail: xuzhaojin1234@126.com

    Shen Li (1982—), male, born in Wuhan, Hubei. He is an associate professor with a doctorate. In 2009, he received his PhD from the Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences. Now he is an associate professor of the School of Science, Tianjin University of Technology, mainly engaged in the research of spectroscopy and its application. E-mail: shenli@tjut.edu.cn

    Corresponding author: shenli@tjut.edu.cn
  • 摘要: 为了获得Sm原子的第一电离阈,将Sm原子多步激发产生的光电离、自电离和场电离信号进行了区分,并研究了不同磁量子数Rydberg态Sm原子对第一电离阈的影响。首先,结合多步共振激发和偏振组合技术,将稀土Sm原子激发到第一电离阈附近具有特定磁量子数的自电离或束缚Rydberg态。接着,通过反向静电场将光电离和自电离等过程产生的离子推出作用区。然后,通过施加延时脉冲电场对束缚Rydberg态Sm原子进行探测。最后,通过改变静电场强度获得了Sm原子第一电离阈随着静电场强度的变化情况,拟合确定了零场下不同磁量子数Sm原子的第一电离阈。实验结果表明:Sm原子的第一电离阈为45519.69±0.17 cm−1;该结果与用其它方法获得的结果进行了比较。实验验证了延时场电离探测技术用于测量Sm原子第一电离阈的有效性。

     

  • 图 1  实验装置图

    Figure 1.  Experimental setup diagram

    图 2  Sm原子的多步激发路径示意图

    Figure 2.  Schematic diagram of multistep excitation path of Sm atom

    图 3  零场和电场下Sm原子在第一电离阈附近的光谱图

    Figure 3.  Spectra of the Sm atom near the first ionization threshold under zero and electric fields

    图 4  td=38.5 μs时,在零场和电场下Sm原子第一电离阈附近的光谱图

    Figure 4.  Spectra of the Sm atom near the first ionization threshold under zero and electric fields at td=38.5 μs

    图 5  Sm原子在静电场为1.9993 V·cm−1时的光谱图

    Figure 5.  Spectra of Sm atom under the electrostatic field of 1.9993 V·cm−1

    图 6  三步激光不同偏振组合下,Sm原子第一电离阈随静电场强度改变而移动的规律图。(a) π + π+ π; (b) π + π+ σ; (c) σ+ + σ+ + σ+

    Figure 6.  Diagram of the first ionization threshold of Sm atom shifting with the change of electrostatic field intensity under different polarization combinations of three-step lasers. (a) π + π+ π; (b) π + π+ σ; (c) σ+ + σ+ + σ+

    表  1  Magnetic quantum numbers of Sm atom in 4f66snk state excited by different polarization combinations of λ1, λ2 and λ3

    Table  1.   Magnetic quantum numbers of Sm atom in 4f66snk state excited by different polarization combinations of λ1, λ2 and λ3

    Combination
    组合
    Polarization state
    偏振状态
    Magnetic quantum number
    磁量子数
    λ1λ2λ3m
    1πππ0
    2ππσ±1
    3σ+σ+σ+3
    下载: 导出CSV

    表  2  Fitting results of the first ionization threshold of the Sm atom with different magnetic quantum numbers

    Table  2.   Fitting results of the first ionization threshold of the Sm atom with different magnetic quantum numbers

    Combination
    组合
    Magnetic quantum number, m
    磁量子数m
    Ionization threshold/ cm−1
    电离阈/ cm−1
    1045519.67±0.21
    2±145519.46±0.18
    3345519.95±0.11
    下载: 导出CSV
  • [1] SATO T K, ASAI M, BORSCHEVSKY A, et al. Measurement of the first ionization potential of lawrencium, element 103[J]. Nature, 2015, 520(7546): 209-211. doi: 10.1038/nature14342
    [2] CHHETRI P, ACKERMANN D, BACKE H, et al. Precision measurement of the first ionization potential of nobelium[J]. Physical Review Letters, 2018, 120(26): 263003. doi: 10.1103/PhysRevLett.120.263003
    [3] RAEDER S, HEGGEN H, TEIGELHÖFER A, et al. Determination of the first ionization energy of polonium by resonance ionization spectroscopy - part I: measurement of even-parity Rydberg states at TRIUMF-ISAC[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2019, 151: 65-71. doi: 10.1016/j.sab.2018.08.005
    [4] BLOCK M. Direct mass measurements and ionization potential measurements of the actinides[J]. Radiochimica Acta, 2019, 107(9-11): 821-831. doi: 10.1515/ract-2019-3143
    [5] SHEN X P, WANG W L, ZHAI L H, et al. New spectroscopic data on high-lying excited even-parity levels of atomic neodymium[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 145: 96-98. doi: 10.1016/j.sab.2018.04.012
    [6] JAYASEKHARAN T, RAZVI M A N, BHALE G L. Even-parity bound and autoionizing Rydberg series of the samarium atom[J]. Journal of Physics B:Atomic,Molecular and Optical Physics, 2000, 33(16): 3123-3136. doi: 10.1088/0953-4075/33/16/314
    [7] SCHMITT A, BUSHAW B A, WENDT K. Determination of the 154Sm ionization energy by high-precision laser spectroscopy[J]. Journal of Physics B:Atomic,Molecular and Optical Physics, 2004, 37(8): 1633-1644. doi: 10.1088/0953-4075/37/8/006
    [8] DESCLAUX J P, FRICKE B. Relativistic prediction of the ground state of atomic Lawrencium[J]. Journal de Physique, 1980, 41(9): 943-946. doi: 10.1051/jphys:01980004109094300
    [9] SHEN L, YE SH W, DAI CH J. Experiment study of ionization limit shift of europium atoms in electric fields[J]. Acta Physics Sinica, 2012, 61(6): 063301. (in Chinese)
    [10] WENDT K, GOTTWALD T, MATTOLAT C, et al. Ionization potentials of the lanthanides and actinides – towards atomic spectroscopy of super-heavy elements[J]. Hyperfine Interactions, 2014, 227(1): 55-67.
    [11] STUDER D, HEINITZ S, HEINKE R, et al. Atomic transitions and the first ionization potential of promethium determined by laser spectroscopy[J]. Physical Review A, 2019, 99(6): 062513. doi: 10.1103/PhysRevA.99.062513
    [12] SHANG X, ZHOU CH X, MA L, et al. The determination of radiative lifetime for some Eu I levels by time-resolved laser-induced fluorescence spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224: 103-106. doi: 10.1016/j.jqsrt.2018.11.007
    [13] NIKI H, MOTOKI K, YASUI M, et al. Selectivity and efficiency of laser isotope separation processes of gadolinium[J]. Journal of Nuclear Science and Technology, 2006, 43(4): 427-431. doi: 10.1080/18811248.2006.9711117
    [14] ANG'ONG'A J, GADWAY B. Polarization spectroscopy of atomic erbium in a hollow cathode lamp[J]. Journal of Physics B:Atomic,Molecular and Optical Physics, 2018, 51(4): 045003. doi: 10.1088/1361-6455/aaa1d4
    [15] CHHETRI P, MOODLEY C S, RAEDER S, et al. Investigation of the first ionization potential of ytterbium in argon buffer gas[J]. Acta Physica Polonica B, 2018, 49(3): 599-603. doi: 10.5506/APhysPolB.49.599
    [16] GOMONAI A I, REMETA E Y. The effect of field strength on the resonance structure of three-photon ionization spectra of the samarium atom[J]. Optics and Spectroscopy, 2013, 114(3): 329-336. doi: 10.1134/S0030400X13030119
    [17] LAWLER J E, FITTANTE A J, DEN HARTOG E A. Atomic transition probabilities of neutral samarium[J]. Journal of Physics B:Atomic,Molecular and Optical Physics, 2013, 46(21): 215004. doi: 10.1088/0953-4075/46/21/215004
    [18] SEEMA A U, MANDAL P K, SAHOO A C, et al.. Radiative lifetimes of even-parity high-lying levels of Sm I by delayed photoionization measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 216: 1-5.
    [19] SAHOO A C, MANDAL P K, SHAH M L, et al. Enhancement of photoionization by applying polarization-based common level excitation scheme for the selective photoionization of odd isotopes of samarium[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 235: 7-14. doi: 10.1016/j.jqsrt.2019.06.014
    [20] WU B R, XU Y F, ZHENG Y F, et al. An experimental investigation of the autoionizing levels of neutral ytterbium[J]. Journal of Physics B:Atomic,Molecular and Optical Physics, 1992, 25(2): 355-361. doi: 10.1088/0953-4075/25/2/005
    [21] WORDEN E F, SOLARZ R W, PAISNER J A et al. First ionization potentials of lanthanides by laser spectroscopy[J]. Journal of the Optical Society of America, 1978, 68(1): 52-61. doi: 10.1364/JOSA.68.000052
    [22] LÜ J, DAI CH J, XU Y F, et al. Perturbed 6snd 1, 3D2 rydberg series of neutral barium[J]. Chinese Physics Letters, 2001, 18(9): 1192-1195. doi: 10.1088/0256-307X/18/9/312
    [23] LI Q Y, HUA L, HE M Q, et al. High-pressure photoionization/chemical ionization-time-of-flight mass spectrometry for classification and identification of green tea aromas[J]. Chinese Journal of Analytical Chemistry, 2019, 47(4): 541-549. (in Chinese)
    [24] HE M Q, HUA L, LI Q Y, et al. Toluene enhanced-high pressure photoionization-time-of-flight mass spectrometry for highly sensitive and rapid detection of phenolic compounds[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 447-454. (in Chinese)
    [25] MARTIN W C, ZALUBAS R, HAGAN L. Atomic Energy Levels, The Rare-Earth Elements[M]. Washington: National Bureau of Standards, 1978.
    [26] ZHU H Q, ZHOU T, LI Y G, et al. An ultraviolet-visible absorption spectrometric method for detection of zinc (Ⅱ) and cobalt (Ⅱ) ions concentration based on boosting modeling[J]. Chinese Journal of Analytical Chemistry, 2019, 47(4): 576-582. (in Chinese)
    [27] ZENG K, MA Y Y, GUO Q ZH, et al. Determination of thionyl chloride residue in terephthaloyl chloride by inductively coupled plasma-optical emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 410-414. (in Chinese)
    [28] DAI CH J, ZHANG S, SHU X W, et al. Pulsed electric-field ionization of Stark states of neutral ytterbium[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, 53(2): 179-188. doi: 10.1016/0022-4073(95)90005-5
    [29] ELIZAROV A Y, CHEREPKOV N A. Two-photon polarization spectroscopy of autoionizing states[J]. Soviet Physics - JETP, 1989, 69(4): 695-699.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1476
  • HTML全文浏览量:  452
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 修回日期:  2020-05-27
  • 网络出版日期:  2020-10-29
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回