留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of resonant waveguide grating filter with reflection and transmission modes

FAN Li-na MA Jun-shan

樊丽娜, 马军山. 兼具反射和透射模式的共振波导光栅滤波器的设计[J]. 中国光学(中英文), 2020, 13(5): 1147-1157. doi: 10.37188/CO.2020-0072
引用本文: 樊丽娜, 马军山. 兼具反射和透射模式的共振波导光栅滤波器的设计[J]. 中国光学(中英文), 2020, 13(5): 1147-1157. doi: 10.37188/CO.2020-0072
FAN Li-na, MA Jun-shan. Design of resonant waveguide grating filter with reflection and transmission modes[J]. Chinese Optics, 2020, 13(5): 1147-1157. doi: 10.37188/CO.2020-0072
Citation: FAN Li-na, MA Jun-shan. Design of resonant waveguide grating filter with reflection and transmission modes[J]. Chinese Optics, 2020, 13(5): 1147-1157. doi: 10.37188/CO.2020-0072

兼具反射和透射模式的共振波导光栅滤波器的设计

详细信息
  • 中图分类号: O436.1; TN25

Design of resonant waveguide grating filter with reflection and transmission modes

doi: 10.37188/CO.2020-0072
Funds: Supported by National Natural Science Foundation of China (No.61775140)
More Information
    Author Bio:

    Fan Lina (1980—), female, born in Yuci, Shanxi. She is a doctoral candidate and an experimentalist. She received her Bachelor's degree from Shanxi Normal University in 2002 and her master's degree from Suzhou University in 2005. She is mainly engaged in the research of micro-nano optical devices. E-mail: lnfan@mail.usts.edu.cn

    Ma Junshan (1967—), male, born in Harbin, Heilongjiang. He is a doctor, professor and doctoral supervisor. He received his doctorate in engineering from Harbin Institute of Technology in 1999. He is mainly engaged in the research of optical instruments and optical-communication photonic devices. E-mail: junshanma@163.com

    Corresponding author: junshanma@163.com
  • 摘要: 目前,应用于生物传感系统的共振波导光栅窄带滤波器仅能实现反射或透射的单一滤波模式。为了扩展被检样品的种类和提高样品的检测准确度,本文基于导模共振效应设计了兼具反射和透射模式的共振波导光栅滤波器。首先,基于经典的一维共振波导光栅结构,通过调节入射条件,设计了在同一波长(632.8 nm)处反射-透射模式可转换的滤波器,该滤波器在两种模式下均具有优良的滤波性能,光谱效率高于98%,Q因子大于1000。然后,从物理机制层面出发,分析了同一器件实现两种滤波模式的共振机理。结果表明:不同入射条件下,同一共振波导光栅结构在设计波长处可实现反射-透射窄带滤波模式的转换。

     

  • 图 1  单层共振波导光栅结构示意图 (结构参数:nH = 1.72,nL = 1.50,d = 179 nm,Λ = 564 nm,f = 0.6,nc = 1.0,ns = 1.50)

    Figure 1.  Structural diagram of single-layer resonant waveguide grating (Structure parameters: nH = 1.72, nL = 1.50, d = 179 nm, Λ = 564 nm, f = 0.6, nc = 1.0, ns = 1.50)

    图 2  不同入射角下的透射光谱图 (a)经典入射; (b)全圆锥入射

    Figure 2.  Transmission spectra for different incident angles (a) classical incidence; (b) full conical incidence

    图 3  共振波长随入射角变化图。(a)经典入射; (b)全圆锥入射

    Figure 3.  Relationship between resonance wavelength and incident angle. (a) Classical incidence; (b) full conical incidence

    图 4  不同入射条件下的透射光谱图

    Figure 4.  Transmission spectra under different incident conditions

    图 5  基于相位匹配条件和本征方程估算的共振位置。(a)方位角0º,入射角22.28º; (b)方位角90º,入射角86.08

    Figure 5.  Resonance locations estimated based on phase matching condition and eigenvalue equation. (a) Azimuth: 0º, incident angle: 22.28º; (b) azimuth: 90º, incident angle: 86.08º

    图 6  共振波长632.8 nm处电场空间分布图。(a)方位角0º,入射角22.28º; (b)方位角90º,入射角86.08º

    Figure 6.  Spatial distribution of electric field at the resonance wavelength of 632.8 nm. (a) Azimuth: 0º, incident angle: 22.28º; (b) Azimuth: 90º, incident angle: 86.08º

  • CUNNINGHAM B, LIN B, QIU J, et al. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions[J]. Sensors and Actuators B:Chemical, 2002, 85(3): 219-228. doi: 10.1016/S0925-4005(02)00111-9
    JIA K H, ZHANG D W, MA J SH. Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges[J]. Sensors and Actuators B:Chemical, 2011, 156(1): 194-197. doi: 10.1016/j.snb.2011.04.013
    QI P, LI Y, FENG M CH, et al. Scanning surface plasmon resonance biosensor for array sample detection[J]. Optics and Precision Engineering, 2012, 20(11): 2365-2372. (in Chinese) doi: 10.3788/OPE.20122011.2365
    WANG Y J, ZHANG CH L, WANG R, et al. Optimization and validation of differential interferometric surface plasmon resonance sensor[J]. Optics and Precision Engineering, 2013, 21(3): 672-679. (in Chinese) doi: 10.3788/OPE.20132103.0672
    MA J Y, LIU SH J, WEI CH Y, et al. Design of reflection resonant grating filters[J]. Acta Physica Sinica, 2008, 57(2): 827-832. (in Chinese) doi: 10.3321/j.issn:1000-3290.2008.02.032
    ZHONG Y, GOLDENFELD Z, LI K, et al. Mid-wave infrared narrow bandwidth guided mode resonance notch filter[J]. Optics Letters, 2017, 42(2): 223-226. doi: 10.1364/OL.42.000223
    LIU ZH Y, GUAN B L, HU P L, et al. Design of resonant filter for ultra-narrow linewidth guide mode[J]. Semiconductor Optoelectronics, 2019, 40(1): 72-76. (in Chinese)
    SAKAT E, VINCENT G, GHENUCHE P, et al. Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering[J]. Optics Letters, 2011, 36(16): 3054-3056. doi: 10.1364/OL.36.003054
    LI Y, WANG Q, WANG J Y, et al. Design and optimization of wide-band filter based on guided mode resonant grating[J]. Acta Photonica Sinica, 2016, 45(4): 0423002. (in Chinese) doi: 10.3788/gzxb20164504.0423002
    FERRARO A, TANGA A A, ZOGRAFOPOULOS D C, et al. Guided mode resonance flat-top bandpass filter for terahertz telecom applications[J]. Optics Letters, 2019, 44(17): 4239-4242. doi: 10.1364/OL.44.004239
    LACOUR D, GRANET G, PLUMEY J P, et al. Polarization independence of a one-dimensional grating in conical mounting[J]. Journal of the Optical Society of America A, 2003, 20(8): 1546-1552. doi: 10.1364/JOSAA.20.001546
    WANG W, CAI W, SHI ZH, et al. Polarization-insensitive one-dimensional guided-mode resonance filter operating at conical mounting[J]. Optics Letters, 2018, 43(21): 5226-5229. doi: 10.1364/OL.43.005226
    YUKINO R, SAHOO P K, SHARMA J, et al. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation[J]. AIP Advances, 2017, 7(1): 015313. doi: 10.1063/1.4975344
    WANG W, GAO X M, SHEN X F, et al. Spectral responses of linear grating filters under full-conical incidence[J]. Optics Letters, 2018, 43(3): 391-394. doi: 10.1364/OL.43.000391
    FAN L N, JIA K H, MA J SH. Transmission filter controlled by incident conditions in single-layer waveguide grating structures[J]. Applied Optics, 2019, 58(31): 8371-8375. doi: 10.1364/AO.58.008371
    BRUNDRETT D L, GLYTSIS E N, GAYLORD T K. Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs[J]. Applied Optics, 1994, 33(13): 2695-2706. doi: 10.1364/AO.33.002695
    MOHARAM M G, GAYLORD T K. Diffraction analysis of dielectric surface-relief gratings[J]. Journal of the Optical Society of America, 1982, 72(10): 1385-1392. doi: 10.1364/JOSA.72.001385
    FAN SH W. The vector theory analysis of binary gratings diffraction characteristics[J]. Optics and Precision Engineering, 1999, 7(5): 30-36. (in Chinese)
    CAO ZH L, LU ZH W, LI F Y, et al. Design consideration of two-dimensional anti-reflective subwavelength periodic gratings[J]. Optics and Precision Engineering, 2002, 10(6): 537-541. (in Chinese)
    WANG S S, MAGNUSSON R. Theory and applications of guided-mode resonance filters[J]. Applied Optics, 1993, 32(14): 2606-2613. doi: 10.1364/AO.32.002606
  • 加载中
图(6)
计量
  • 文章访问数:  1968
  • HTML全文浏览量:  746
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-23
  • 修回日期:  2020-05-13
  • 网络出版日期:  2020-09-10
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回