留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电沉积掺铝氧化锌纳米柱的光学性质裁剪

汤洋

汤洋. 电沉积掺铝氧化锌纳米柱的光学性质裁剪[J]. 中国光学(中英文), 2020, 13(6): 1257-1266. doi: 10.37188/CO.2020-0075
引用本文: 汤洋. 电沉积掺铝氧化锌纳米柱的光学性质裁剪[J]. 中国光学(中英文), 2020, 13(6): 1257-1266. doi: 10.37188/CO.2020-0075
TANG Yang. Tailoring the optical properties of Al-doped ZnO Nanorods by electrodeposition[J]. Chinese Optics, 2020, 13(6): 1257-1266. doi: 10.37188/CO.2020-0075
Citation: TANG Yang. Tailoring the optical properties of Al-doped ZnO Nanorods by electrodeposition[J]. Chinese Optics, 2020, 13(6): 1257-1266. doi: 10.37188/CO.2020-0075

电沉积掺铝氧化锌纳米柱的光学性质裁剪

基金项目: 国家自然科学基金(No. 61404007);北京市优秀人才培养拔尖自然科学资助项目(No. 2015000021223ZK38)
详细信息
    作者简介:

    汤 洋(1983—),男,吉林吉林人,高级工程师,2011年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事太阳能电池与光伏建筑一体化方面的研究工作。Email:ytang118@163.com

  • 中图分类号: TM23

Tailoring the optical properties of Al-doped ZnO Nanorods by electrodeposition

Funds: National Natural Science Foundation of China (No. 61404007); the Beijing Talents Fund (No. 2015000021223ZK38)
More Information
  • 摘要: 为在新型纳米结构太阳能电池中应用ZnO纳米柱阵列材料,则要求能够对纳米柱的几何形貌与光电物理性质进行裁剪与操控。本文使用电沉积方法制备了ZnO纳米柱阵列,通过在电解液中使用Al(NO33 和NH4NO3,实现了对纳米柱晶体质量、直径、阵列密度、柱间距、Al掺杂浓度、光学带隙、近带边发射、斯托克斯位移等物理性质的调控。其可在28~102 nm范围内操控ZnO纳米柱的直径。NH4NO3的使用可将纳米柱的阵列密度降低至2.7×109 /cm2及将纳米柱间距增大至164 nm。电解液中NH4NO3的使用可将ZnO纳米柱中的Al/Zn重量比提升至2.92%,结果表明NH4NO3可以有效地促进ZnO纳米柱的Al掺杂。通过Al(NO33与NH4NO3可以对ZnO纳米柱的光学带隙在3.36~3.55 eV范围内进行裁剪,并对ZnO纳米柱的近带边发射性质进行操控。Al(NO33的引入使ZnO纳米柱的斯托克斯位移增大至200 meV。NH4NO3能够有效地将样品的斯托克斯位移降低至26 meV。通过使用Al(NO33 和NH4NO3实现了对ZnO纳米柱阵列几何形貌与光电物理性质的有效裁剪,获得了高质量的纳米柱阵列材料。

     

  • 图 1  样品1~5的X射线衍射图谱

    Figure 1.  XRD patterns of samples 1~5

    图 2  样品1~5的扫描电子显微镜图片

    Figure 2.  Scanning electron microscopy images of samples 1~5

    图 3  样品1~5的能量色散光谱

    Figure 3.  EDX spectra of the samples 1~5

    图 4  样品1~5的透射光谱。

    Figure 4.  Transmission spectra of samples 1~5

    图 5  样品1~5的光学带隙拟合图谱(线性拟合线为红色直线)

    Figure 5.  Fitting plots of the band gap energies of samples 1~5 (The linear fitting curve is shown in red)

    图 6  样品1~5的室温光致发光图谱

    Figure 6.  Photoluminescence spectra of samples 1~5 at room temperature

    图 7  样品1~5的室温光致发光图谱在300~470 nm范围的高斯拟合结果

    Figure 7.  Gauss fitting results of photoluminescence spectra of samples 1~5 (300~470 nm) at room temperature

    表  1  ZnO纳米柱的直径、密度、间距

    Table  1.   ZnO nanorods’ diameter, density and distance

    SamplesDiameter/nmDensity/109 cm−2Distance/nm
    154±1513.0
    257±2011.0
    365±246.856
    4102±441.9127
    528±162.7164
    下载: 导出CSV

    表  2  样品1~5中ZnO纳米柱的NBE 1、NBE 2峰位、斯托克斯位移。(样品1~5的近带边发射峰位为拟合峰)

    Table  2.   NBE 1, NBE 2 peak positions, and stokes shift of the ZnO nanorods in samples 1~5. The NBE peaks in samples 1~5 were from the fitting peaks.

    SamplesNBE 1(eV)NBE 2(eV)Stokes shift (meV)
    13.3473.252183
    23.3503.263200
    33.3363.22794
    43.3343.22126
    53.3533.23667
    下载: 导出CSV
  • [1] KIM D, YUN I, KIM H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells[J]. Current Applied Physics, 2010, 10(3): S459-S462. doi: 10.1016/j.cap.2010.02.030
    [2] LUKA G, WITKOWSKI B S, WACHNICKI L. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition[J]. Materials Science and Engineering:B, 2014, 186: 15-20. doi: 10.1016/j.mseb.2014.03.002
    [3] COMAN T, URSU E L, NICA V, et al. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition[J]. Thin Solid Films, 2014, 571: 198-205. doi: 10.1016/j.tsf.2014.10.037
    [4] DUYGULU N E, KODOLBAS A O, EKERIM A. Effects of argon pressure and r. f. power on magnetron sputtered aluminum doped ZnO thin films[J]. Journal of Crystal Growth, 2014, 394: 116-125. doi: 10.1016/j.jcrysgro.2014.02.028
    [5] CHEN J, YE H, AÉ L, et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications[J]. Solar Energy Materials and Solar Cells, 2011, 95(6): 1437-1440. doi: 10.1016/j.solmat.2010.10.006
    [6] RIEDEL W, TANG Y, OHM W, et al. Effect of initial galvanic nucleation on morphological and optical properties of ZnO nanorod arrays[J]. Thin Solid Films, 2015, 574: 177-183. doi: 10.1016/j.tsf.2014.12.006
    [7] GUO L D, TANG Y, CHIANG F K, et al. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition[J]. Thin Solid Films, 2017, 638: 426-432. doi: 10.1016/j.tsf.2017.08.015
    [8] 汤洋, 郭逦达, 张增光, 等. 硝酸铵诱导电沉积氧化锌纳米柱的铝掺杂及光学性质操控[J]. 光学 精密工程,2015,23(5):1288-1296. doi: 10.3788/OPE.20152305.1288

    TANG Y, GUO L D, ZHANG Z G, et al. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate[J]. Optics and Precision Engineering, 2015, 23(5): 1288-1296. (in Chinese) doi: 10.3788/OPE.20152305.1288
    [9] TANG Y, CHEN J, GREINER D, et al. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5239-5243. doi: 10.1021/jp109022k
    [10] KUMAR A, HUANG N, STAEDLER T, et al. Mechanical characterization of aluminum doped zinc oxide (Al: ZnO) nanorods prepared by sol–gel method[J]. Applied Surface Science, 2013, 265: 758-763. doi: 10.1016/j.apsusc.2012.11.101
    [11] CHEN ZH W, ZHAN G H, WU Y P, et al. Sol–gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology[J]. Journal of Alloys and Compounds, 2014, 587: 692-697. doi: 10.1016/j.jallcom.2013.10.241
    [12] 汤洋, 赵颖, 张增光, 等. 氧化锌纳米柱阵列的水热合成及其性能[J]. 材料研究学报,2015,29(7):529-534.

    TANG Y, ZHAO Y, ZHANG Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays[J]. Chinese Journal of Materials Research, 2015, 29(7): 529-534. (in Chinese)
    [13] 汤洋, 陈颉. 电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移[J]. 发光学报,2014,35(10):1165-1171. doi: 10.3788/fgxb20143510.1165

    TANG Y, CHEN J. Optical band gap blue shift and stokes shift in Al-doped ZnO nanorods by electrodeposition[J]. Chinese Journal of Luminescence, 2014, 35(10): 1165-1171. (in Chinese) doi: 10.3788/fgxb20143510.1165
    [14] 胡明江, 晋兵营. 基于CuO/ZnO异质结纳米花的薄膜型丙酮传感器研究[J]. 分析化学,2019,47(3):363-370.

    HU M J, JIN B Y. Research on film type acetone sensor based on copper oxide/zinc oxide heterostructure nanoflower[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 363-370. (in Chinese)
    [15] 梁彩云, 刘凤平, 张翠忠, 等. 基于铜纳米粒子/氧化锌/石墨烯修饰电极的电化学方法测定硫酸卡那霉素[J]. 分析化学,2019,47(5):739-747.

    LIANG C Y, LIU F P, ZHANG C ZH, et al. Electrochemical determination of kanamycin sulfate based on copper nanoparticle/zinc oxide/graphene modified electrode[J]. Chinese Journal of Analytical Chemistry, 2019, 47(5): 739-747. (in Chinese)
    [16] 刘书绘, 雷杰, 吴媛, 等. 基于四氧化三钴-多壁碳纳米管纳米复合材料修饰阳极的苯酚/氧气燃料电池的构建[J]. 分析化学,2019,47(8):1195-1204.

    LIU SH H, LEI J, WU Y, et al. Cobaltosic oxide-multi-walled carbon nanotubes nanocomposite-modified electrode as anode[J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1195-1204. (in Chinese)
    [17] 唐小强, 陈裕雲, 罗燕妮, 等. 基于TiO2 NRs@ZnIn2S4 NSs复合材料的谷胱甘肽光电化学传感器的构建与应用[J]. 分析化学,2019,47(8):1188-1194.

    TANG X Q, CHEN Y Y, LUO Y N, et al. Photoelectrochemical sensor based on titanium dioxide nanorods@ZnIn2S4 nanosheets nanocomposites[J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1188-1194. (in Chinese)
    [18] CHO S, JUNG S H, JANG J W, et al. Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through use of a seed layer[J]. Crystal Growth and Design, 2008, 8(12): 4553-4558. doi: 10.1021/cg800593q
    [19] KIM C E, MOON P, KIM S, et al. Effect of carrier concentration on optical bandgap shift in ZnO: Ga thin films[J]. Thin Solid Films, 2010, 518(22): 6304-6307. doi: 10.1016/j.tsf.2010.03.042
    [20] CHEN J, AÉ L, LUX-STEINER M C. High internal quantum efficiency ZnO nanorods prepared at low temperature[J]. Applied Physics Letters, 2008, 92(16): 161906. doi: 10.1063/1.2910769
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1394
  • HTML全文浏览量:  433
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-27
  • 修回日期:  2020-05-27
  • 网络出版日期:  2020-09-10
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回