留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳流通道-谐振腔耦合结构测量荧光物质微位移

李霖伟 陈智辉 杨毅彪 费宏明

李霖伟, 陈智辉, 杨毅彪, 费宏明. 纳流通道-谐振腔耦合结构测量荧光物质微位移[J]. 中国光学(中英文), 2021, 14(1): 145-152. doi: 10.37188/CO.2020-0076
引用本文: 李霖伟, 陈智辉, 杨毅彪, 费宏明. 纳流通道-谐振腔耦合结构测量荧光物质微位移[J]. 中国光学(中英文), 2021, 14(1): 145-152. doi: 10.37188/CO.2020-0076
LI Lin-wei, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming. Nanofluidic channel-resonant cavity structure for measuring micro-displacement of fluorescent substances[J]. Chinese Optics, 2021, 14(1): 145-152. doi: 10.37188/CO.2020-0076
Citation: LI Lin-wei, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming. Nanofluidic channel-resonant cavity structure for measuring micro-displacement of fluorescent substances[J]. Chinese Optics, 2021, 14(1): 145-152. doi: 10.37188/CO.2020-0076

纳流通道-谐振腔耦合结构测量荧光物质微位移

基金项目: 国家自然科学基金资助项目(No. 11674239,No. 61575139,No. 61575138);山西省青年拔尖人才支持计划;三晋英才支持计划
详细信息
    作者简介:

    李霖伟(1994—),男,山西晋中人,硕士研究生,2017年于太原科技大学获得学士学位,现就读于太原理工大学新型传感器与智能控制教育部/山西省重点实验室光学工程专业,主要从事微纳光子学方面的研究。E-mail:1726393868@qq.com

    陈智辉(1984—),男,山西太原人,博士,教授,博士生导师,2006 年于北京邮电大学获得学士学位,2012年于瑞典皇家工学院获得博士学位,现任职于太原理工大学新型传感器与智能控制教育部/山西省重点实验室,主要从事微纳光子学方面的研究。E-mail:huixu@126.com

  • 中图分类号: TN815

Nanofluidic channel-resonant cavity structure for measuring micro-displacement of fluorescent substances

Funds: Supported by National Natural Science Foundation of China (No. 11674239, No. 61575139, No. 61575138); Program for the Top Young Talents of Shanxi Province; Program for the Sanjin Outstanding Talents of China
More Information
  • 摘要: 本文提出了一种纳流通道-谐振腔耦合结构,用于实现对荧光物质微位移的检测。在本文中,首先,使用时域有限差分法,研究了量子点偏振态及结构参数对荧光与结构耦合效果的影响,进而对结构进行优化;然后,通过测量耦合结构输出光功率的变化,实现对荧光物质微位移的检测;最后,对影响传感灵敏度的因素进行研究。结果表明,相比传统方法,纳流通道-谐振腔耦合结构的折射率处于2.8~3.3之内时,该结构都可以实现对荧光物质微位移的高精度准确传感,并且通过减小纳流通道与谐振腔的间距可进一步提高传感灵敏度。

     

  • 图 1  纳流通道-谐振腔耦合结构二维模型图

    Figure 1.  Two-dimensional model diagram of a nanofluidic channel-resonant cavity structure

    图 2  微位移检测原理图

    Figure 2.  Schematic diagram of micro-displacement detection

    图 3  偶极子光源偏振方向不同时的耦合效果曲线和电场分布图

    Figure 3.  Coupling effect curves and electric field distributions of dipole source with different polarization directions

    图 4  纳流通道及下波导与谐振腔间距不同时的耦合效果曲线

    Figure 4.  Coupling effect curves when the distance between the microfluidic channel, the lower waveguide and the resonant cavity are different

    图 5  不同谐振腔大小时的耦合效果曲线

    Figure 5.  Coupling effect curves when the cavity size is different

    图 6  纳流通道参数不同时的耦合效果曲线

    Figure 6.  Coupling effect curves when the microfluidic channel parameters are different

    图 7  不同量子点位置时端口2的光功率曲线

    Figure 7.  Optical power curves at port 2 when the quantum dot position changes

    图 8  量子点处于不同位置时的电场分布

    Figure 8.  Electric field distributions when quantum dots are in different positions

    图 9  量子点与结构中心水平距离d4变化时端口2的峰值功率曲线

    Figure 9.  Peak power curve of port 2 when the horizontal distance d4 between the quantum dot and the center of the structure changes

    图 10  结构间距不同,量子点与结构中心水平距离d4变化时端口2的峰值功率曲线

    Figure 10.  Peak power curves of port 2 varying with d4, the horizontal distance between the quantum dot and the center of the structure, at different structure spacing

    图 11  不同结构折射率时,量子点与结构中心水平距离d4变化时端口2的峰值功率曲线

    Figure 11.  Peak power curves of port 2 varying with d4, the horizontal distance between the quantum dot and the center of the structure, at different refractive indexs

  • [1] 陈飘飘, 邢怡晨, 刘洋, 等. 基于DNA QDs@PDA荧光共振能量转移的半胱氨酸传感器[J]. 分析化学,2020,48(1):83-89.

    CHEN P P, XING Y CH, LIU Y, et al. DNA Quantum Dots@Polydopamine as a fluorescent sensor for cysteine detection based on fluorescence resonance energy transfer effect[J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 83-89. (in Chinese)
    [2] MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6): 435-446. doi: 10.1038/nmat1390
    [3] 杜方凯, 张慧, 谭学才, 等. 基于氮掺杂石墨烯量子点/硫化镉纳米晶电化学发光传感器检测硫化氢[J]. 分析化学,2020,48(2):240-247.

    DU F K, ZHANG H, TAN X C, et al. Detection of hydrogen sulfide based on nitrogen-doped graphene quantum dots/cadmium sulfide nanocrystals electrochemiluminescence sensor[J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 240-247. (in Chinese)
    [4] 康倩文, 张国, 柴瑞涛, 等. 基于碳纳米点荧光增强检测铝离子[J]. 分析化学,2019,47(12):1901-1908.

    KANG Q W, ZHANG G, CHAI R T, et al. Synthesis of carbon nanodots for detection of aluminum ion with fluorescence enhancement[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12): 1901-1908. (in Chinese)
    [5] 陈蜜, 岳仁叶, 李智, 等. 串联的纳米传感器用于癌细胞中miRNA的超灵敏检测[J]. 分析化学,2020,48(1):40-48.

    CHEN M, YUE R Y, LI ZH, et al. Cascaded nanosensors for ultrasensitive detection of miRNA in cancer cells[J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 40-48. (in Chinese)
    [6] GUASTO J S, BREUER K S. High-speed quantum dot tracking and velocimetry using evanescent wave illumination[J]. Experiments in Fluids, 2009, 47(6): 1059. doi: 10.1007/s00348-009-0700-z
    [7] CUI L, ZHANG T, MORGAN H. Optical particle detection integrated in a dielectrophoretic lab-on-a-chip[J]. Journal of Micromechanics and Microengineering, 2002, 12(1): 7-12. doi: 10.1088/0960-1317/12/1/302
    [8] HISHIDA K, SAKAKIBARA J. Combined planar laser-induced fluorescence–particle image velocimetry technique for velocity and temperature fields[J]. Experiments in Fluids, 2000, 29(1): S129-S140.
    [9] STRUBEL V, SIMOENS S, VERGNE P, et al. Fluorescence tracking and μ-PIV of individual particles and lubricant flow in and around lubricated point contacts[J]. Tribology Letters, 2017, 65(3): 75. doi: 10.1007/s11249-017-0859-z
    [10] VARELA S, BALAGUÉ I, SANCHO I, et al. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV)[J]. Journal of Microencapsulation, 2016, 33(2): 153-161. doi: 10.3109/02652048.2016.1142016
    [11] MEINHART C D, WERELEY S T, SANTIAGO J G. PIV measurements of a microchannel flow[J]. Experiments in Fluids, 1999, 27(5): 414-419. doi: 10.1007/s003480050366
    [12] SANTIAGO J G, WERELEY S T, MEINHART C D, et al. A particle image velocimetry system for microfluidics[J]. Experiments in Fluids, 1998, 25(4): 316-319. doi: 10.1007/s003480050235
    [13] JIN S, HUANG P, PARK J, et al. Near-surface velocimetry using evanescent wave illumination[J]. Experiments in Fluids, 2004, 37(6): 825-833. doi: 10.1007/s00348-004-0870-7
    [14] SADR R, YODA M, ZHENG Z, et al. An experimental study of electro-osmotic flow in rectangular microchannels[J]. Journal of Fluid Mechanics, 2004, 506: 357-367. doi: 10.1017/S0022112004008626
    [15] ZETTNER C, YODA M. Particle velocity field measurements in a near-wall flow using evanescent wave illumination[J]. Experiments in Fluids, 2003, 34(1): 115-121. doi: 10.1007/s00348-002-0541-5
    [16] POUYA S, KOOCHESFAHANI M, SNEE P, et al. Single Quantum Dot (QD) imaging of fluid flow near surfaces[J]. Experiments in Fluids, 2005, 39(4): 784-786. doi: 10.1007/s00348-005-0004-x
    [17] OKAMOTO K, NISHIO S, SAGA T, et al. Standard images for particle-image velocimetry[J]. Measurement Science and Technology, 2000, 11(6): 685-691. doi: 10.1088/0957-0233/11/6/311
    [18] FOREMAN M R, SWAIM J D, VOLLMER F. Whispering gallery mode sensors[J]. Advances in Optics and Photonics, 2015, 7(2): 168-240. doi: 10.1364/AOP.7.000168
    [19] BUTT M A, KHONINA S N, KAZANSKIY N L. Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing[J]. Journal of Modern Optics, 2018, 65(9): 1135-1140. doi: 10.1080/09500340.2018.1427290
    [20] WHITE I M, ZHU H Y, SUTER J D, et al. Refractometric sensors for lab-on-a-chip based on optical ring resonators[J]. IEEE Sensors Journal, 2007, 7(1): 28-35. doi: 10.1109/JSEN.2006.887927
    [21] KWON M S, STEIER W H. Microring-resonator-based sensor measuring both the concentration and temperature of a solution[J]. Optics Express, 2008, 16(13): 9372-9377. doi: 10.1364/OE.16.009372
    [22] LIU ZH H, LIU L, ZHU Z D, et al. Whispering gallery mode temperature sensor of liquid microresonastor[J]. Optics Letters, 2016, 41(20): 4649-4652. doi: 10.1364/OL.41.004649
    [23] XU H T, HAFEZI M, FAN J, et al. Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures[J]. Optics Express, 2014, 22(3): 3098-3104. doi: 10.1364/OE.22.003098
    [24] KOCH B, YI Y, ZHANG J Y, et al. Reflection-mode sensing using optical microresonators[J]. Applied Physics Letters, 2009, 95(20): 201111. doi: 10.1063/1.3263143
    [25] LI B B, CLEMENTS W R, YU X C, et al. Single nanoparticle detection using split-mode microcavity Raman lasers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14657-14662. doi: 10.1073/pnas.1408453111
    [26] ZHI Y Y, YU X CH, GONG Q H, et al. Single nanoparticle detection using optical microcavities[J]. Advanced Materials, 2017, 29(12): 1604920. doi: 10.1002/adma.201604920
    [27] FERN R E, ONTON A. Refractive index of AlAs[J]. Journal of Applied Physics, 1971, 42(9): 3499-3500. doi: 10.1063/1.1660760
    [28] YEE K. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307. doi: 10.1109/TAP.1966.1138693
    [29] CHEN ZH H, WANG Y, YANG Y B, et al. Enhanced normal-direction excitation and emission of dual-emitting quantum dots on a cascaded photonic crystal surface[J]. Nanoscale, 2014, 6(24): 14708-14715. doi: 10.1039/C4NR03851G
  • 加载中
图(11)
计量
  • 文章访问数:  1349
  • HTML全文浏览量:  315
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-26
  • 修回日期:  2020-05-12
  • 网络出版日期:  2020-12-25
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回