留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于介电常数近零态和铟锡氧化物集成硅基波导的电光半加器

梁志勋 许川佩 朱爱军 胡聪 杜社会

梁志勋, 许川佩, 朱爱军, 胡聪, 杜社会. 基于介电常数近零态和铟锡氧化物集成硅基波导的电光半加器[J]. 中国光学(中英文), 2020, 13(5): 1001-1013. doi: 10.37188/CO.2020-0078
引用本文: 梁志勋, 许川佩, 朱爱军, 胡聪, 杜社会. 基于介电常数近零态和铟锡氧化物集成硅基波导的电光半加器[J]. 中国光学(中英文), 2020, 13(5): 1001-1013. doi: 10.37188/CO.2020-0078
LIANG Zhi-xun, XU Chuan-pei, ZHU Ai-jun, HU Cong, DU She-hui. Integrated silicon waveguide electro-optic half-adder based on Epsilon-Near-Zero and ITO[J]. Chinese Optics, 2020, 13(5): 1001-1013. doi: 10.37188/CO.2020-0078
Citation: LIANG Zhi-xun, XU Chuan-pei, ZHU Ai-jun, HU Cong, DU She-hui. Integrated silicon waveguide electro-optic half-adder based on Epsilon-Near-Zero and ITO[J]. Chinese Optics, 2020, 13(5): 1001-1013. doi: 10.37188/CO.2020-0078

基于介电常数近零态和铟锡氧化物集成硅基波导的电光半加器

基金项目: 国家自然科学基金(No. 61561012,No. 61671164,No. 61861012);广西省自然科学基金(No. 2018GXNSFAA138115,No. 2017GXNSFAA198021,No. 2020GXNSFAA159172)
详细信息
    作者简介:

    梁志勋(1986—),广西柳州人,工程师,博士研究生,2014年于华南理工大学获得硕士学位,2018年9月至今在桂林电子科技大学仪器科学与技术专业攻读博士学位,主要从事片上光网络的应用研究。E-mail:lzx478@163.com

    许川佩(1968—),广西合浦人,教授,博士生导师,1990年于桂林电子工业学院获得学士学位,2006年于西安电子科技大学获得博士学位,主要从事自动检测技术与智能仪器等方面的研究。E-mail:xcp@guet.edu.cn

  • 中图分类号: TN256, TP381

Integrated silicon waveguide electro-optic half-adder based on Epsilon-Near-Zero and ITO

Funds: Supported by National Natural Science Foundation of China (No. 61561012, No. 61671164, No. 61861012), Natural Science Foundation of Guangxi Province (No. 2018GXNSFAA138115, No. 2017GXNSFAA198021, No. 2020GXNSFAA159172)
More Information
  • 摘要: 为了解决传统电光混合运算逻辑单元速率低、功耗高、尺寸大等问题,以实现电光混合高速运算,本文设计了一种基于介电常数近零态(Epsilon-Near-Zero)和铟锡氧化物(ITO)薄膜电调控的集成硅基波导电光混合半加器。利用ITO激活材料薄膜的电调控特性实现了光路通断和交叉,从而实现了两位二进制数的半加法功能,通过3D-FDTD模拟仿真对器件模型结构参数进行了优化设计。仿真实验结果表明,当施加电压为0 V和2.35 V时,器件能够完成光信号逻辑控制。电光混合半加器工作在1550 nm波长时,其插入损耗为0.63 dB,消光比为31.73 dB,数据传输速率为61.62 GHz,每字节消耗能量为13.44 fJ,整个半加器尺寸小于21.3 μm×1.5 μm×1.2 μm。该器件具有结构紧凑、插入损耗低等特点,为高速电光混合光学逻辑器件及半加器设计提供了理论依据。

     

  • 图 1  半加器模型及其电极示意图。(a)半加器平面俯视图(b)半加器3D模型(c)半加器器件加电极方案平面俯视图(d)半加器器件加电极方案3D模型

    Figure 1.  Schematic diagram of the proposed electro-optic half-adder model and its electrode. (a) Top view of the half-adder; (b) 3D model of the half-adder; (c) top view of the half-adder with electrode; (d) 3D model of the half-adder with electrode

    图 2  ITO薄膜施加电压模型简图及其特性。(a)施加电压模型;(b)模型等效电路;(c)模型等效电路简化图;(d)施加0~4 V电压时,载流子浓度的变化情况;(e)ITO的复合介电常数随电压的变化情况

    Figure 2.  Schematic diagram of ITO film's applied voltage and its charateristics. (a) The model of applied voltage; (b) equivalent circuit; (c) simplification of the equivalent circuit; (d) variation of carrier concentration when applied voltage is 0~4 V; (e) relationship between the real (green line) and imaginary (red line) components of the complex permittivity ITO as a function of the gating voltage.

    图 3  (a)光信号直通逻辑控制单元;(b)施加电压情况下,光信号直通逻辑控制单元ON状态下的电磁场分布情况;(c)未施加电压情况下,光信号直通逻辑控制单元OFF状态下的电磁场分布情况;(d)光信号交叉逻辑控制单元;(e)施加电压情况下,光信号交叉、直通逻辑控制单元为交叉状态;(f)未施加电压情况下,光信号交叉、直通逻辑控制单元为直通状态

    Figure 3.  (a) Straight logic control unit for the optical signal; electromagnetic field distribution of straight logic control unit under ON state (b) and (c) OFF state; (d) BAR and CROSS logic control unit; (e) CROSS state of BAR and CROSS logic control unit with a voltage applied; (f) BAR state of BAR and CROSS logic control unit without a voltage applied

    图 4  ON和OFF状态下的透射率和ER随ITO的变化情况

    Figure 4.  Transmission and ER vary with different ITO thickness in ON and OFF states

    图 5  ON和OFF状态下的透射率和ER随SiO2厚度的变化情况

    Figure 5.  Transmission and ER vary with thickness of SiO2 in ON and OFF states

    图 6  ON和OFF状态下的透射率和ERLc1的变化情况

    Figure 6.  Transmission and ER vary with Lc1 in ON and OFF states

    图 7  ON和OFF状态下透射率和ERLc2的变化情况

    Figure 7.  Transmission and ER vary with Lc2 in ON and OFF states

    图 8  三条平行硅基波导耦合模型

    Figure 8.  Coupling model of three parallel waveguides

    图 9  ON和OFF状态下透射率和ER随gap的变化情况

    Figure 9.  Transmission and ER vary with gap in ON and OFF states

    图 10  逻辑控制区域施加不同逻辑控制时半加器器件的仿真电磁场分布图。

    Figure 10.  The electric field distribution of the half-adder under different biasing conditions

    图 11  电光半加器的等效仿真电路

    Figure 11.  Equivalent simulation circuit of electro-optic half-adder

    图 12  100 Gbit/s数据传输速率下的动态响应图

    Figure 12.  Dynamic response waveform when the data transmission rate is 100 Gbit/s

    表  1  器件模型最优化参数

    Table  1.   Optimized parameters of the device model

    ParametersValues/nm
    ITO15
    SiO214
    gap140
    Lc11350
    Lc28700
    下载: 导出CSV

    表  2  两位二进制加法功能真值表

    Table  2.   Truth table of the half-adder

    inputsumcarry
    xy
    0000
    1010
    0110
    1101
    下载: 导出CSV

    表  3  电光半加器性能参数

    Table  3.   The performance parameters of the electro-optical half-adder

    iputsumcarryER/(dB)IL/(dB)
    x/Vy/V
    000.000350.00026\\
    2.3500.547620.0002134.73870.57609
    02.350.540810.0001935.17330.63044
    2.352.350.000380.5662231.73200.43103
    下载: 导出CSV
  • 孙凝晖, 谭光明. 高性能计算机发展与政策[J]. 中国科学院院刊,2019,34(6):609-616.

    SUN N H, TAN G M. Development and policy of high performance computer[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(6): 609-616. (in Chinese)
    金钟, 陆忠华, 李会元, 等. 高性能计算之源起——科学计算的应用现状及发展思考[J]. 中国科学院院刊,2019,34(6):625-639.

    JIN ZH, LU ZH H, LI H Y, et al. Origin of high performance computing—current status and developments of scientific computing applications[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(6): 625-639. (in Chinese)
    SERVICE R F. Chipmakers look past Moore's law, and silicon[J]. Science, 2018, 361(6400): 321. doi: 10.1126/science.361.6400.321
    YE P D, ERNST T, KHARE M V. The last silicon transistor: nanosheet devices could be the final evolutionary step for Moore's Law[J]. IEEE Spectrum, 2019, 56(8): 30-35. doi: 10.1109/MSPEC.2019.8784120
    董文婵. 基于标准逻辑单元的全光可编程逻辑阵列研究[D]. 武汉: 华中科技大学, 2018.

    DONG W CH. Research on all-optical programmable logic array based on canonical logic units[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese)
    GRANPAYEH A, HABIBIYAN H, PARVIN P. Photonic crystal directional coupler for all-optical switching, tunable multi/demultiplexing and beam splitting applications[J]. Journal of Modern Optics, 2019, 66(4): 359-366. doi: 10.1080/09500340.2018.1511859
    JANANI K, RAJESH A, SHANKAR T. Design of an optical half-adder using cohesive twin-structured PCRR[J]. Journal of Computational Electronics, 2018, 17(2): 837-844. doi: 10.1007/s10825-018-1161-5
    刁加加, 安立宝, 常春蕊. 碳纳米管在典型微纳电子器件中的应用进展[J]. 液晶与显示,2016,31(2):149-156.

    DIAO J J, AN L B, CHANG CH R. Progress on the application of carbon nanotubes in typical micro and nano electronic devices[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(2): 149-156. (in Chinese)
    王蒙, 蒋同海, 唐新余, 等. 光通信网络中的信号导向逻辑器件设计[J]. 半导体光电,2018,39(6):802-805, 814.

    WANG M, JIANG T H, TANG X Y, et al. Design and implementation of signal logic-oriented devices in optical communication network[J]. Semiconductor Optoelectronics, 2018, 39(6): 802-805, 814. (in Chinese)
    张杰, 李仕琪, 丁健, 等. 基于石墨烯-硅混合集成光波导的电光半加器[J]. 光电子·激光,2018,29(8):805-810.

    ZHANG J, LI SH Q, DING J, et al. Design of a electro-optical half-adder based on silicon-graphene waveguides[J]. Journal of Optoelectronics·Laser, 2018, 29(8): 805-810. (in Chinese)
    REZAEI M H, ZARIFKAR A. Subwavelength electro-optical half-subtractor and half-adder based on graphene plasmonic waveguides[J]. Plasmonics, 2019, 14(6): 1939-1947. doi: 10.1007/s11468-019-00997-8
    DONG G N, WANG Y L, ZHANG X L. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity[J]. Optics Letters, 2018, 43(24): 5977-5980. doi: 10.1364/OL.43.005977
    SUN SH, NARAYANA V K, SARPKAYA I, et al. Hybrid photonic-plasmonic nonblocking broadband 5× 5 router for optical networks[J]. IEEE Photonics Journal, 2018, 10(2): 4900312.
    ZHU A J, CHEN D Y, XU CH P, et al.. A fault check graph approach for photonic router in network on chip[C]. Proceedings of 2018 IEEE 27th Asian Test Symposium, 2018: 13-18.
    YAHYA M R, WU N, YAN G ZH, et al. RoR: a low insertion loss design of rearrangeable hybrid photonic-plasmonic 6x6 non-blocking router for ONoCs[J]. IEICE Electronics Express, 2019, 16: 20190346. doi: 10.1587/elex.16.20190346
    朱爱军, 赵春霞, 胡聪, 等. 基于细粒度的光片上网络MRR制程漂移容错研究[J]. 仪器仪表学报,2019,40(2):249-256.

    ZHU A J, ZHAO CH X, HU C, et al. Study on fine-grain based fault tolerance of MRR process variation in photonic network on chip[J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 249-256. (in Chinese)
    祁媚. 石墨烯薄膜的可控制备及其光调控特性与器件研究[D]. 西安: 西北大学, 2017.

    QI M. Study on controllable synthesis of graphene film and its optical modulating property/device[D]. Xi’an: Northwest University, 2017. (in Chinese)
    XIE Y Y, HU X H, ZHANG Y W, et al. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films[J]. Carbohydrate Polymers, 2020, 229: 115456. doi: 10.1016/j.carbpol.2019.115456
    ZHAO Y, XING G J, ZHAO Y N, et al. Graphene aerogel modified with a vanadium nitride film by a sputtering method for use in high-performance supercapacitors[J]. Materials Letters, 2020, 261: 127085. doi: 10.1016/j.matlet.2019.127085
    钟东洲, 计永强. 周期性极化铌酸锂晶体的电光复合逻辑门[J]. 光子学报,2015,44(5):0523004. doi: 10.3788/gzxb20154405.0523004

    ZHONG D ZH, JI Y Q. Electro-optical composite logic gates based on periodically poled lithium niobate crystal[J]. Acta Photonica Sinica, 2015, 44(5): 0523004. (in Chinese) doi: 10.3788/gzxb20154405.0523004
    王兰, 董渊, 高嵩, 等. 钙钛矿材料在激光领域的研究进展[J]. 中国光学,2019,12(5):993-1014. doi: 10.3788/co.20191205.0993

    WANG L, DONG Y, GAO S, et al. Research progress of perovskite materials in the field of lasers[J]. Chinese Optics, 2019, 12(5): 993-1014. (in Chinese) doi: 10.3788/co.20191205.0993
    KUMAR A, MEDHEKAR S. All optical NOR and NAND gates using four circular cavities created in 2D nonlinear photonic crystal[J]. Optics &Laser Technology, 2020, 123: 105910.
    杨傅子. 从晶体光学到液晶光学—液晶物理的光学研究方法进展[J]. 液晶与显示,2016,31(1):1-39.

    YANG F Z. From crystal optics to liquid crystal optics-the development of optical techniques for studying liquid crystal physics[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(1): 1-39. (in Chinese)
    林致远, 杨成绍, 邹志翔, 等. ITO像素电极工序对于HADS产品TFT特性的影响[J]. 液晶与显示,2016,31(1):370-374.

    LIN ZH Y, YANG CH SH, ZOU ZH X, et al. Effects of pixel ITO process on TFT characteristics of HADS product[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(1): 370-374. (in Chinese)
    靳琳, 宋世超, 文龙, 等. 基于表面等离激元的偏振不灵敏型电光调制器的理论研究[J]. 光电工程,2018,45(11):180156. doi: 10.12086/oee.2018.180156

    JIN L, SONG SH CH, WEN L, et al. Theoretical investigation of surface plasmonic polariton-based electro-optical modulator with low polarization dependence[J]. Opto-Electronic Engineering, 2018, 45(11): 180156. (in Chinese) doi: 10.12086/oee.2018.180156
    LIANG ZH X, XU CH P, ZHU A J, et al. Hybrid photonic-plasmonic electro-optic modulator for optical ring network-on-chip[J]. Optik, 2020, 210: 164503. doi: 10.1016/j.ijleo.2020.164503
    MA ZH ZH, LI ZH R, LIU K, et al. Indium-tin-oxide for high-performance electro-optic modulation[J]. Nanophotonics, 2015, 4(1): 198-213. doi: 10.1515/nanoph-2015-0006
    BADR M M, ABDELATTY M Y, SWILLAM M A. Ultra-fast silicon electro-optic modulator based on ITO-integrated directional coupler[J]. Physica Scripta, 2019, 94(6): 065502. doi: 10.1088/1402-4896/ab0ce1
    傅英, 徐文兰, 陆卫. 半导体量子电子和光电子器件[J]. 物理学进展,2001,21(3):255-277. doi: 10.3321/j.issn:1000-0542.2001.03.001

    FU Y, XU W L, LU W. Semiconductor quantum devices in electronics and optoelectronic[J]. Progress in Physics, 2001, 21(3): 255-277. (in Chinese) doi: 10.3321/j.issn:1000-0542.2001.03.001
    SOREF R. Mid-infrared 2×2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection[J]. Photonics Research, 2014, 2(5): 102-110. doi: 10.1364/PRJ.2.000102
    BELLANCA G, ORLANDI P, BASSI P. Assessment of the orthogonal and non-orthogonal coupled-mode theory for parallel optical waveguide couplers[J]. Journal of the Optical Society of America A, 2018, 35(4): 577-585. doi: 10.1364/JOSAA.35.000577
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  2400
  • HTML全文浏览量:  512
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-28
  • 修回日期:  2020-06-08
  • 网络出版日期:  2020-09-16
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回