留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态微光实时偏振成像集成技术

梁宛玉 许洁 戴放 常维静 那启跃

梁宛玉, 许洁, 戴放, 常维静, 那启跃. 固态微光实时偏振成像集成技术[J]. 中国光学(中英文), 2021, 14(3): 578-586. doi: 10.37188/CO.2020-0086
引用本文: 梁宛玉, 许洁, 戴放, 常维静, 那启跃. 固态微光实时偏振成像集成技术[J]. 中国光学(中英文), 2021, 14(3): 578-586. doi: 10.37188/CO.2020-0086
LIANG Wan-yu, XU Jie, DAI Fang, CHANG Wei-jing, NA Qi-yue. Real-time polarization imaging integrated technology for solid-state low-light imaging[J]. Chinese Optics, 2021, 14(3): 578-586. doi: 10.37188/CO.2020-0086
Citation: LIANG Wan-yu, XU Jie, DAI Fang, CHANG Wei-jing, NA Qi-yue. Real-time polarization imaging integrated technology for solid-state low-light imaging[J]. Chinese Optics, 2021, 14(3): 578-586. doi: 10.37188/CO.2020-0086

固态微光实时偏振成像集成技术

基金项目: 十三五装备预研项目(No. 31512060102-2)
详细信息
    作者简介:

    梁宛玉(1985—),女,河南南阳人,硕士,高级工程师,2011年于南京理工大学获得硕士学位,主要从事计算机软件与理论,学习模式识别、数字图像处理方面的研究。Email:wanyu-7018@163.com

    许洁(1992—),女,江苏南通人,硕士,工程师,2017年于西安电子科技大学获得硕士学位,主要从事光电成像设计与图像处理方面研究工作。Email:xujieshangxian@163.com

  • 中图分类号: TN223

Real-time polarization imaging integrated technology for solid-state low-light imaging

Funds: Supported by Equipment Preresearch Project of 13th Five Year Plan (No. 31512060102-2)
More Information
  • 摘要: 高性能的微光夜视探测是光电探测未来的发展方向。本文针对在微弱光照射情况下,因为感光度不足而使得获得的偏振图像存在较大误差的问题,提出了一种固态微光实时偏振成像集成技术。通过引入白光通道和4个偏振方向的8个偏振通道,可在电子倍增CCD(EMCCD)微光器件上实现偏振和微光探测的集成。经试验验证,该技术获取的偏振信息准确度较高,且无偏振单元,使得器件的最低工作照度不被降低,器件同时具备微光-偏振探测功能,除可大幅提高探测器件对目标的探测识别能力外,还具有加工难度低、成本低等优点。

     

  • 图 1  成像器件像元与偏振单元的集成示意图

    Figure 1.  Schematic diagram of integration between the imaging device pixel and polarization unit

    图 2  4个偏振方向的单元阵列设计

    Figure 2.  Array design in four polarization directions

    图 3  9个偏振方向的阵列设计

    Figure 3.  Array design in nine polarization directions

    图 4  4个偏振方向加无偏振单元的阵列设计

    Figure 4.  Array design with four polarization directions and non-polarization elements

    图 5  微光偏振成像系统

    Figure 5.  Low-light polarization imaging system

    图 6  12偏振态成像

    Figure 6.  12-polarization images

    图 7  多偏振态图像偏振成像效果对比

    Figure 7.  Comparison of the polarization imaging effects of multi-polarization images

    图 8  4个偏振方向的单元阵列设计偏振度图像

    Figure 8.  Polarization degree image of array with four polarization directions

    图 9  4个偏振方向加无偏振单元的阵列设计偏振度图像

    Figure 9.  Polarization degree image of array with four polarization directions plus the non-polarized channel

    图 10  (a)靶标偏振图与(b)靶标原图

    Figure 10.  (a) Polarization diagram and (b) original diagram of the target

    表  1  多偏振态图像偏振对比

    Table  1.   Comparison of polarization for multi-polarization image

    参数最大值均值对比度
    DoPAoPDoPAoPDoPAoPDoPAoP
    统计分析3角度0.5570.2720.4770.0103.41×10−50.0113.3722.203
    4角度0.4690.3140.3870.0133.05×10−50.0143.5562.325
    6角度0.3600.4020.2730.0052.63×10−50.0133.5792.473
    12角度0.1340.7850.0270.3022.03×10−50.0423.5586.769
    均匀取值3角度0.3050.7850.0920.1902.22×10−40.0994.8165.007
    4角度0.3300.7850.1310.1371.97×10−40.1145.2073.799
    6角度0.2690.7850.0570.2351.22×10−40.0954.5386.253
    12角度0.1340.7850.0270.3022.04×10−50.0423.5586.769
    下载: 导出CSV

    表  2  偏振图与原图的对比度与清晰度比较

    Table  2.   Comparison of contrast and clarity between the polarization image and the original image

    原图偏振图
    对比度0.197110.36039
    清晰度0.00913160.019933
    下载: 导出CSV
  • [1] 李岩, 张伟杰, 陈嘉玉. 偏振场景目标探测的建模与仿真[J]. 光学精密工程,2017,25(8):2233-2243. doi: 10.3788/OPE.20172508.2233

    LI Y, ZHANG W J, CHEN J Y. Modeling and simulation for target detection in polarization scene[J]. Optics and Precision Engineering, 2017, 25(8): 2233-2243. (in Chinese) doi: 10.3788/OPE.20172508.2233
    [2] 廖延彪. 偏振光学[M]. 北京: 科学出版社, 2003.

    LIAO Y B. Polarization Optics[M]. Beijing: Science Press, 2003. (in Chinese)
    [3] 梁健, 巨海娟, 张文飞, 等. 偏振光学成像去雾技术综述[J]. 光学学报,2017,37(4):0400001. doi: 10.3788/AOS201737.0400001

    LIANG J, JU H J, ZHANG W F, et al. Review of optical polarimetric dehazing technique[J]. Acta Optica Sinica, 2017, 37(4): 0400001. (in Chinese) doi: 10.3788/AOS201737.0400001
    [4] 杨力铭, 梁健, 张文飞, 等. 基于非偏振光照明的水下偏振成像目标增强技术[J]. 光学学报,2018,38(6):0611003. doi: 10.3788/AOS201838.0611003

    YANG L M, LIANG J, ZHANG W F, et al. Underwater polarimetric imaging target enhancement technology based on unpolarized illumination[J]. Acta Optica Sinica, 2018, 38(6): 0611003. (in Chinese) doi: 10.3788/AOS201838.0611003
    [5] 李寒霜, 李博, 王淑荣. 空间紫外遥感光谱仪器偏振特性研究[J]. 光学学报,2018,38(1):185-189.

    LI H SH, LI B, WANG SH R. Polarization performance in space ultraviolet remote sensing spectral instruments[J]. Acta Optica Sinica, 2018, 38(1): 185-189. (in Chinese)
    [6] POWELL S B, GARNETT R, MARSHALL J, et al. Bioinspired polarization vision enables underwater geolocalization[J]. Science Advances, 2018, 4(4): eaao6841. doi: 10.1126/sciadv.aao6841
    [7] 高文, 朱明, 郝志成. 彩色夜视技术的研究进展[J]. 液晶与显示,2016,31(12):1168-1179. doi: 10.3788/YJYXS20163112.1168

    GAO W, ZHU M, HAO ZH CH. Survey of color night vision technology[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(12): 1168-1179. (in Chinese) doi: 10.3788/YJYXS20163112.1168
    [8] 陈远金, 张猛蛟, 戴放, 等. EMCCD集成偏振-微光一体化成像技术研究[J]. 应用光学,2020,41(2):242-247.

    CHEN Y J, ZHANG M J, DAI F, et al. Research on polarization-low level integrated imaging technology based on EMCCD[J]. Journal of Applied Optics, 2020, 41(2): 242-247. (in Chinese)
    [9] 杨洁, 金伟其, 裘溯, 等. 考虑偏振片非理想性的可见光偏振成像修正模型[J]. 光学精密工程,2020,28(2):334-339.

    YANG J, JIN W Q, QIU S, et al. Correction model for visible light polarization imaging considering non-ideality of polarizers[J]. Optics and Precision Engineering, 2020, 28(2): 334-339. (in Chinese)
    [10] 沈薛晨, 刘钧, 高明. 基于小波-Contourlet变换的偏振图像融合算法[J]. 红外技术,2020,42(2):182-189.

    SHEN X CH, LIU J, GAO M. Polarizing image fusion algorithm based on wavelet-contourlet transform[J]. Infrared Technology, 2020, 42(2): 182-189. (in Chinese)
    [11] 彭文竹, 张禹, 王钦, 等. 基于正交偏振方向的多幅图像复原新方法[J]. 液晶与显示,2017,32(10):835-845. doi: 10.3788/YJYXS20173210.0835

    PENG W ZH, ZHANG Y, WANG Q, et al. New method of multiple image restoration based on orthogonal polarization direction[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(10): 835-845. (in Chinese) doi: 10.3788/YJYXS20173210.0835
    [12] 黎海育, 李抄, 李校博, 等. 基于偏振相机的全斯托克斯偏振仪优化研究[J]. 光学学报,2020,40(3):0326001. doi: 10.3788/AOS202040.0326001

    LI H Y, LI CH, LI X B, et al. Optimization of polarization-camera-based full stokes polarimeter[J]. Acta Optica Sinica, 2020, 40(3): 0326001. (in Chinese) doi: 10.3788/AOS202040.0326001
    [13] 张志刚, 董凤良, 张青川, 等. 像素偏振片阵列制备及其在偏振图像增强中的应用[J]. 物理学报,2014,63(18):184204. doi: 10.7498/aps.63.184204

    ZHANG ZH G, DONG F L, ZHANG Q CH, et al. Fabrication of pixelated polarizer array and its application in polarization enhancement[J]. Acta Physica Sinica, 2014, 63(18): 184204. (in Chinese) doi: 10.7498/aps.63.184204
    [14] 陈东静, 崔宏青, 冯亚云, 等. 一种新的测量扭曲向列相液晶盒盒厚和扭曲角的Stokes矢量法[J]. 液晶与显示,2007,22(6):662-667. doi: 10.3969/j.issn.1007-2780.2007.06.004

    CHEN D J, CUI H Q, FENG Y Y, et al. Novel stokes parameter method for determination of cell thickness and twist angle of twisted nematic liquid crystal cells[J]. Chinese Journal of Liquid Crystals and Displays, 2007, 22(6): 662-667. (in Chinese) doi: 10.3969/j.issn.1007-2780.2007.06.004
    [15] 蒋云峰, 武东生, 黄富瑜. 彩色夜视技术方法综述[J]. 激光技术,2020,44(1):108-112.

    JIANG Y F, WU D SH, HUANG F Y. Summary of color night vision technology[J]. Laser Technology, 2020, 44(1): 108-112. (in Chinese)
    [16] 李莉. EMCCD实时图像处理系统设计及FPGA实现研究[J]. 电子设计工程,2019,27(13):161-164, 170. doi: 10.3969/j.issn.1674-6236.2019.13.035

    LI L. EMCCD real-time image processing system design and FPGA implementation research[J]. Electronic Design Engineering, 2019, 27(13): 161-164, 170. (in Chinese) doi: 10.3969/j.issn.1674-6236.2019.13.035
    [17] 张晓阳, 刘金国, 孔德柱, 等. CMOS和EMCCD在全局快门模式下的信噪比探讨[J]. 电光与控制,2019,26(7):80-84. doi: 10.3969/j.issn.1671-637X.2019.07.016

    ZHANG X Y, LIU J G, KONG D ZH, et al. Signal to noise ratio of CMOS and EMCCD in global shutter mode[J]. Electronics Optics &Control, 2019, 26(7): 80-84. (in Chinese) doi: 10.3969/j.issn.1671-637X.2019.07.016
    [18] 康果果, 谭峤峰, 陈伟力, 等. 亚波长金属线栅的设计、制备及偏振成像实验研究[J]. 物理学报,2011,60(1):014218. doi: 10.7498/aps.60.014218

    KANG G G, TAN Q F, CHEN W L, et al. Design and fabrication of sub-wavelength metal wire-grid and its application to experimental study of polarimetric imaging[J]. Acta Physica Sinica, 2011, 60(1): 014218. (in Chinese) doi: 10.7498/aps.60.014218
    [19] 彭勇, 冯斌, 史泽林, 等. 微偏振片阵列成像的非均匀校正研究[J]. 红外与激光工程,2017,46(4):0404004. doi: 10.3788/IRLA201746.0404004

    PENG Y, FENG B, SHI Z L, et al. Non-uniformity correction in polarization imaging obtained with integrated microgrid polarimeters[J]. Infrared and Laser Engineering, 2017, 46(4): 0404004. (in Chinese) doi: 10.3788/IRLA201746.0404004
    [20] 罗海波, 刘燕德, 兰乐佳, 等. 分焦平面偏振成像关键技术[J]. 华东交通大学学报,2017,34(1):8-13.

    LUO H B, LIU Y D, LAN L J, et al. Key technologies of polarization imaging for division of focal plane polarimeters[J]. Journal of East China Jiaotong University, 2017, 34(1): 8-13. (in Chinese)
    [21] 于淼. 分焦平面像素偏振片阵列的制备研究[J]. 黑龙江科学,2017,8(20):38-39. doi: 10.3969/j.issn.1674-8646.2017.20.015

    YU M. Study on fabrication of polarization plane polarizing plate array[J]. Heilongjiang Science, 2017, 8(20): 38-39. (in Chinese) doi: 10.3969/j.issn.1674-8646.2017.20.015
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2514
  • HTML全文浏览量:  536
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2020-06-15
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2021-05-14

目录

    /

    返回文章
    返回