留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷帘快门式CMOS探测器的星图像移补偿

张博研 孔德柱 刘金国 武星星 董得义

张博研, 孔德柱, 刘金国, 武星星, 董得义. 卷帘快门式CMOS探测器的星图像移补偿[J]. 中国光学(中英文), 2020, 13(6): 1276-1284. doi: 10.37188/CO.2020-0089
引用本文: 张博研, 孔德柱, 刘金国, 武星星, 董得义. 卷帘快门式CMOS探测器的星图像移补偿[J]. 中国光学(中英文), 2020, 13(6): 1276-1284. doi: 10.37188/CO.2020-0089
ZHANG Bo-yan, KONG De-zhu, LIU Jin-guo, WU Xing-xing, DONG De-yi. Compensation of star image motion for a CMOS image sensor with a rolling shutter[J]. Chinese Optics, 2020, 13(6): 1276-1284. doi: 10.37188/CO.2020-0089
Citation: ZHANG Bo-yan, KONG De-zhu, LIU Jin-guo, WU Xing-xing, DONG De-yi. Compensation of star image motion for a CMOS image sensor with a rolling shutter[J]. Chinese Optics, 2020, 13(6): 1276-1284. doi: 10.37188/CO.2020-0089

卷帘快门式CMOS探测器的星图像移补偿

基金项目: 国家重点研发计划资助项目(No. 2016YFB0500100, No. 2016YFB0501002);国家自然科学基金资助项目(No. 11873007)
详细信息
    作者简介:

    张博研(1987—),女,吉林白城人,硕士,助理研究员,2010年、2013年于西安电子科技大学分别获得学士、硕士学位,主要从事立体测绘和图像处理等方面的研究。E-mail:boyan1021@163.com

  • 中图分类号: D590.35 D510.40

Compensation of star image motion for a CMOS image sensor with a rolling shutter

Funds: Supported by National Key Research and Development Program (No. 2016YFB0500100, No. 2016YFB0501002); National Natural Science Foundation of China (No. 11873007)
More Information
  • 摘要: 本文研究了卷帘快门式CMOS成像器件在拍摄星图时引入的快门效应。根据卷帘快门CMOS图像传感器的成像原理和特点, 分析了星图中由于快门效应导致的星点变化情况,对该成像方式引入的图像变形,提出了一种像移补偿方法。该方法在已知星图拍摄帧频、CMOS图形传感器相邻行曝光时间间隔的基础上,通过对相邻星图中的星点进行目标提取、质心计算以及星点质心匹配等操作,完成景物在像面上像移速度的计算,最后结合该速度值和CMOS图像传感器的行曝光时间间隔,计算星点质心在单帧星图中的像移,逆向补偿。通过实际拍摄的星图对算法的效果进行测试,实验结果表明,利用补偿后的星图解算姿态数据时,其中非机动模式下与两个星敏的夹角误差可达到0.5″以内,机动模式下与两个星敏的夹角误差也可达到0.6″左右,不仅明显优于补偿前,且精度高于很多目前主流的星敏感器。该实验结果不仅证明了算法的有效性,而且在一定程度上推广了卷帘快门式CMOS 相机在航空航天领域的应用。

     

  • 图 1  典型的CMOS传感器的结构

    Figure 1.  Framework of a typical CMOS sensor

    图 2  卷帘CMOS图像探测器的成像过程

    Figure 2.  Imaging process of a rolling shutter CMOS sensor

    图 3  卷帘CMOS图像探测器效果示意图

    Figure 3.  Schematic diagram of rolling shutter CMOS detector

    图 4  像移补偿算法流程

    Figure 4.  Flow chart of image shift compensation

    图 5  星图局部截图

    Figure 5.  Part of real star image

    图 6  相邻两帧图像的星点提取结果对比

    Figure 6.  Comparison of star extraction results between two adjacent star images

    图 7  星点目标提取及质心计算流程

    Figure 7.  Flow chart of star extraction and centroid calculation

    图 8  相邻两帧星图的星点匹配结果

    Figure 8.  Matched stars of two adjacent image

    表  1  非机动模式下星相机光轴与a星敏之间的夹角误差

    Table  1.   Angle error between the star-camera and star sensor a in non-maneuver mode

    序号俯仰角/°侧摆角/°补偿前误差1σ/″补偿后误差1σ/″
    1 0.549 −6.516 4.353 0.540
    2 0.051 −36.699 5.424 0.439
    3 0.152 −16.769 7.147 0.768
    4 0.334 12.903 6.284 0.702
    5 0 −5.542 4.177 0.377
    6 0 8.672 4.491 0.384
    7 0 12.284 5.261 0.546
    8 −0.231 10.533 5.535 0.231
    9 −0.370 −24.558 4.225 0.300
    10 3.023 −25.764 5.360 0.481
    平均值 5.249 0.476
    下载: 导出CSV

    表  2  非机动模式下星相机光轴与b星敏之间的夹角误差

    Table  2.   Angle error between the star-camera and star sensor b in non-maneuver mode

    序号俯仰角/°侧摆角/°补偿前误差1σ/″补偿后误差1σ/″
    1 0.549 −6.516 5.607 0.420
    2 0.051 −36.699 5.186 0.317
    3 0.152 −16.769 4.375 0.211
    4 0.334 12.903 3.876 0.361
    5 0 −5.542 3.968 0.249
    6 0 8.672 3.233 0.297
    7 0 12.284 5.261 0.567
    8 −0.231 10.533 2.984 0.185
    9 −0.370 −24.558 3.889 0.266
    10 3.023 −25.764 3.960 0.202
    平均值 4.234 0.308
    下载: 导出CSV

    表  3  机动模式下星相机光轴与a星敏之间的夹角误差

    Table  3.   Angle error between the star-camera and the star sensor a in maneuver mode

    序号俯仰角/(°)侧摆角/(°)补偿前误差1σ/″补偿后误差1σ/″
    10−18.1917.7540.818
    20−31.9616.6860.532
    302.5975.9140.318
    405.1547.3870.714
    503.8557.9960.734
    平均值7.1470.623
    下载: 导出CSV

    表  4  机动模式下星相机光轴与b星敏之间夹角误差

    Table  4.   Angle error between the star-camera and star sensor b in maneuver mode

    序号俯仰角/°侧摆角/°补偿前误差1σ/″补偿后误差1σ/″
    10−18.1918.1340.543
    20−31.9616.5630.392
    302.5974.7820.241
    405.1545.9730.616
    503.8556.1890.932
    平均值6.3280.545
    下载: 导出CSV
  • [1] SUN ZH Y, ZHANG D, FANG W. An ASIC chip with pipeline ADCs for CCD sensor imaging system[J]. Sensors and Actuators A:Physical, 2018, 279: 284-292. doi: 10.1016/j.sna.2018.06.014
    [2] 孙振亚, 刘栋斌, 方伟, 等. 高密度模块化TDI CCD成像系统设计[J]. 红外与激光工程,2018,47(6):0618001. doi: 10.3788/IRLA201847.0618001

    SUN ZH Y, LIU D B, FANG W, et al. Design of high density modularity TDI CCD imaging system[J]. Infrared and Laser Engineering, 2018, 47(6): 0618001. (in Chinese) doi: 10.3788/IRLA201847.0618001
    [3] 宁永慧, 郭汉洲, 余达, 等. 基于LM98640的TDI-CCD暗场扣除方法[J]. 液晶与显示,2019,34(6):592-597. doi: 10.3788/YJYXS20193406.0592

    NING Y H, GUO H ZH, YU D, et al. Dark field deduction method of TDI--CCD based on LM98640[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(6): 592-597. (in Chinese) doi: 10.3788/YJYXS20193406.0592
    [4] 杨成财, 鞠国豪, 陈永平. 集成PIN光敏元的CMOS探测器光电响应特性研究[J]. 中国光学,2019,12(5):1076-1089. doi: 10.3788/co.20191205.1076

    YANG CH C, JU G H, CHEN Y P. Study on the photo response of a CMOS sensor integrated with PIN photodiodes[J]. Chinese Optics, 2019, 12(5): 1076-1089. (in Chinese) doi: 10.3788/co.20191205.1076
    [5] 张军亮, 戚涛, 李晖, 等. 基于GL0816传感器的高速线阵CMOS相机系统设计[J]. 液晶与显示,2019,34(1):24-32. doi: 10.3788/YJYXS20193401.0024

    ZHANG J L, QI T, LI H, et al. Design of high speed linear CMOS camera system based on GL0816 sensor[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(1): 24-32. (in Chinese) doi: 10.3788/YJYXS20193401.0024
    [6] PARK J, LEE Y, KIM B, et al. Pixel technology for improving IR quantum efficiency of backside-illuminated CMOS image sensor[J]. International Image Sensor Society,2019,4(R14):1-4.
    [7] XU CH, MO Y W, REN G J, et al. . A stacked global-shutter CMOS imager with SC-Type hybrid-GS pixel and self-knee point calibration single frame HDR and on-chip binarization algorithm for smart vision applications[C]. Proceedings of 2019 IEEE International Solid- State Circuits Conference, IEEE, 2019: 94-96.
    [8] KOBAYASHI M, SEKINE H, MIKI T, et al. A 3.4μm pixel pitch global shutter CMOS image sensor with dual in-pixel charge domain memory[J]. Japanese Journal of Applied Physics, 2019, 58(SB): SBBL02. doi: 10.7567/1347-4065/ab00f3
    [9] XU J T, SHI X L, NIE K M, et al. A global shutter high speed TDI CMOS image sensor with pipelined charge transfer pixel[J]. IEEE Sensors Journal, 2018, 18(7): 2729-2736. doi: 10.1109/JSEN.2018.2800743
    [10] 刘智, 柴华, 李娜娜. CMOS图像传感器中卷帘式快门特性及其应用[J]. 光学 精密工程,2009,17(8):2017-2023.

    LIU ZH, CHAI H, LI N N. Shutter mode of CMOS image sensor and its application[J]. Optics and Precision Engineering, 2009, 17(8): 2017-2023. (in Chinese)
    [11] 张惠宇宸, 贺小军, 苏志强. 卷帘数字域TDI技术的CMOS成像系统的SNR模型建立[J]. 长春理工大学学报(自然科学版),2018,41(4):68-72.

    ZHANG H Y CH, HE X J, SU ZH Q. SNR model building of CMOS imaging system of rolling digital domain TDI technology[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(4): 68-72. (in Chinese)
    [12] HERNANDEZ-PALACIOS J, RANDEBERG L L. Intercomparison of EMCCD- and sCMOS-based imaging spectrometers for biomedical applications in low-light conditions[J]. Proceedings of SPIE, 2012, 8215: 82150Q. doi: 10.1117/12.909680
    [13] 贾永丹, 王伟之, 孙建, 等. 高精度星相机光学系统像质评价及实现[J]. 空间控制技术与应用,2018,44(3):43-49.

    JIA Y D, WANG W ZH, SUN J. Evaluation and implementation of image quality in high-precision star camera optical system[J]. Aerospace Control and Application, 2018, 44(3): 43-49. (in Chinese)
    [14] VAN BEZOOIJEN R W H. SIRTF autonomous star tracker[J]. Proceedings of SPIE, 2003, 4850: 108-121. doi: 10.1117/12.461606
    [15] ZHANG P, ZHAO Q L, LIU J N, et al. A brightness-referenced star identification algorithm for APS star tracker[J]. Sensors, 2014, 14(10): 18498-18514. doi: 10.3390/s141018498
    [16] LI J, WEI X G, ZHANG G J. Iterative algorithm for autonomous star identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 536-547. doi: 10.1109/TAES.2014.130729
    [17] ZHU X F, WU F, XU Q G. A fast star image extraction algorithm for autonomous star sensors[J]. Proceedings of SPIE, 2012, 8558: 855821. doi: 10.1117/12.999641
    [18] 赵战民, 朱占龙, 王军芬. 改进的基于灰度级的模糊C均值图像分割算法[J]. 液晶与显示,2020,35(5):499-507. doi: 10.3788/YJYXS20203505.0499

    ZHAO ZH M, ZHU ZH L, WANG J F. Improved fuzzy C-means algorithm based on gray-level for image segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(5): 499-507. (in Chinese) doi: 10.3788/YJYXS20203505.0499
    [19] 黄冠婷, 韩学辉, 龚晓婷, 等. 基于图像分割和区域匹配的灰度图像彩色化算法[J]. 液晶与显示,2019,34(6):619-626. doi: 10.3788/YJYXS20193406.0619

    HUANG G T, HAN X H, GONG X T, et al. Gray image colorization algorithm based on image segmentation and region matching[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(6): 619-626. (in Chinese) doi: 10.3788/YJYXS20193406.0619
    [20] BOLELLI F, CANCILLA M, BARALDI L, et al. Toward reliable experiments on the performance of connected components labeling algorithms[J]. Journal of Real-Time Image Processing, 2020, 17(2): 229-244. doi: 10.1007/s11554-018-0756-1
    [21] 王海涌, 费峥红, 王新龙. 基于高斯分布的星像点精确模拟及质心计算[J]. 光学 精密工程,2009,17(7):1672-1677.

    WANG H Y, FEI ZH H, WANG X L. Precise simulation of star spots and centroid calculation based on Gaussian distribution[J]. Optics and Precision Engineering, 2009, 17(7): 1672-1677. (in Chinese)
    [22] WANG H Y, XU E SH, LI ZH F, et al. Gaussian analytic centroiding method of star image of star tracker[J]. Advances in Space Research, 2015, 56(10): 2196-2205. doi: 10.1016/j.asr.2015.08.027
    [23] 王苹. 高精度视频配准算法中的静态图像配准算法[J]. 液晶与显示,2020,35(6):612-618.

    WANG P. Static image registration algorithm in high-precision video registration algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(6): 612-618. (in Chinese)
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1733
  • HTML全文浏览量:  475
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-09
  • 修回日期:  2020-06-15
  • 网络出版日期:  2020-10-29
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回