留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于配准的机载红外非均匀性校正技术应用

吕宝林 佟首峰 徐伟 冯钦评 王德江

吕宝林, 佟首峰, 徐伟, 冯钦评, 王德江. 基于配准的机载红外非均匀性校正技术应用[J]. 中国光学(中英文), 2020, 13(5): 1124-1137. doi: 10.37188/CO.2020-0109
引用本文: 吕宝林, 佟首峰, 徐伟, 冯钦评, 王德江. 基于配准的机载红外非均匀性校正技术应用[J]. 中国光学(中英文), 2020, 13(5): 1124-1137. doi: 10.37188/CO.2020-0109
LV Bao-lin, TONG Shou-feng, XU Wei, FENG Qin-ping, WANG De-jiang. Non-uniformity correction of airborne infrared detection system based on inter-frame registration[J]. Chinese Optics, 2020, 13(5): 1124-1137. doi: 10.37188/CO.2020-0109
Citation: LV Bao-lin, TONG Shou-feng, XU Wei, FENG Qin-ping, WANG De-jiang. Non-uniformity correction of airborne infrared detection system based on inter-frame registration[J]. Chinese Optics, 2020, 13(5): 1124-1137. doi: 10.37188/CO.2020-0109

基于配准的机载红外非均匀性校正技术应用

基金项目: 国家自然科学基金项目(No. 61675202)
详细信息
    作者简介:

    吕宝林(1982—),男,吉林长春人,副研究员,2007年于吉林大学获得硕士学位,主要从事光学遥感、图像处理技术的研究。E-mail:lvbl@ciomp.ac.cn

    佟首峰(1972—),男,吉林白城人,教授,2000年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学遥感,空间激光通信等领域的研究。E-mai:tsf1998@sina.com

    徐 伟,(1981—),男,黑龙江大庆人,研究员,2008 年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事航天光学遥感、新体制成像技术研究。E-mail: xwciomp@126.com

    冯钦评,(1994—),男,吉林四平人,2016 年于长春理工大学获得学士学位,自2017年始至今在长春光机所硕博连读,主要研究方向为数字图像处理与分析。E-mai: lvictor.2008.happy@163.com

    王德江(1981—),男,黑龙江双鸭山人,研究员,2013年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事伺服控制系统和红外探测技术等方面的研究。E-mail:wangdj04@ciomp.ac.cn

  • 中图分类号: TP394.1;TH691.9

Non-uniformity correction of airborne infrared detection system based on inter-frame registration

Funds: Supported by National Natural Science Foundation of China (No. 61675202)
More Information
  • 摘要: 机载红外点目标探测系统在搭载飞机飞行中探测系统的环境参数会发生变化,导致通过传统地面标定方法获取的非均匀性校正参数的准确性有所降低,故有必要进行机上基于场景的非均匀性校正。本文提出了一种基于帧间配准的机上非均匀性校正算法,首先对图像进行预处理,滤除探测器坏点影响,然后用两帧邻近图像计算互功率谱,求出互相关函数,确定配准位移。两帧连续图像完成配准后,通过误差函数最小化来实现校正参数的更新,最后对整个图像序列进行上述迭代计算,获取最终校正参数。本文模拟了一组非均匀性场景图像序列作为实验图像序列,通过实验分析,提出了帧间图像变化(平移、旋转、缩放)对本算法校正效果的影响,然后采用两个具有代表性的算法与本文提出的算法分别对该图像序列进行处理,并从图像质量和收敛速度两方面比较算法性能。结果表明:与其他两种算法相比,本文提出的算法非均匀性校正效果较好,峰值信噪比提高了20 dB以上,结构相似性则突破了0.99。本文提出的算法虽然比较复杂,但校正参数收敛速度较快,易于在硬件平台上实现,具有一定的工程应用前景。

     

  • 图 1  两帧图像之间相对于场景的位移示意图,两帧图像大小均为512×384

    Figure 1.  Illustration of the relative displacement between two continuous frames. The size of the two images are both 512 × 384

    图 2  该两帧图像之间的互功率谱(实部),图中峰值对应的坐标(x0, y0) = (−58,94)即为两帧图像之间的位移

    Figure 2.  A cross-power spectrum between two frames of images (real part). The relative displacement (x0, y0) = (−58,94) is determined by the coordinate of the peak shown in the figure

    图 3  较明显的非均匀噪声产生的互功率谱响应示意图。(a)和(b)是两帧参与计算互功率谱的图,(c)为计算结果

    Figure 3.  Illustration of a cross-power spectrum response caused by the significant non-uniformity. (a) and (b) are the two frames used to calculate the cross-power spectrum and (c) is the calculation result

    图 4  图3(c)掩模过滤非均匀背景噪声响应后的互功率谱响应

    Figure 4.  Cross-power spectrum in Fig. 3(c) after filtering the non-uniformity background response by mask filter

    图 5  IRLMS算法流程图

    Figure 5.  Flow chart of IRLMS

    图 6  图像变换对配准的影响。(a)原图;(b)(c)(d)分别相对于(a)平移(120,120)、旋转2°、放大1.03倍,(e)(f)(g)分别是(b)(c)(d)与(a)计算的互功率谱

    Figure 6.  Registering accuracy affected by geometry transformation. (a) Original image; (b)(c)(d) are respectively translated by (120,120), rotated by 2 degrees, enlarged by 1.03 X relative to (a); (e)(f)(g) are the cross-power spectrum of (b)(c)(d) and (a), respectively.

    图 7  添加增益非均匀性示意图。(a)真值图像;(b)模拟增益非均匀性背景(增益范围为0.5~1.5);(c)将(a)进行非均匀性增益,模拟非均匀场景图像

    Figure 7.  Illustration of adding non-uniformity gain. (a) A ground-truth image; (b) simulated non-uniformity gain (range: 0.5~1.5); (c) non-uniformity scene after adding non-uniformity gain

    图 8  增益非均匀性真值与估计值的对比。 (a)真值;(b)估计值(MSE:0.0028)

    Figure 8.  Comparison between ground-truth and estimated non-uniformity gains. (a) Ground-truth; (b) estimated by IRLMS (MSE: 0.0028)

    图 9  引入不同范围的随机旋转角度时估计增益系数的准确性

    Figure 9.  Estimation correctness of gain coefficient by inducing various ranges of random rotation

    图 10  引入不同范围的随机缩放时估计增益系数的准确性

    Figure 10.  Estimation correctness of gain coefficient by inducing various ranges of random scaling

    图 11  几种算法非均匀性增益迭代估计比较(从上到下:THPF、CS、IRLMS;从左到右:第10、20、50、100、200帧迭代估计)

    Figure 11.  Iterative estimated non-uniformity gain comparisons of different algorithms (from top to bottom: THPF, CS, IRLMS; from left to right: the 10th, 20th, 50th, 100th, 200th frame).

    图 12  各算法的去非均匀性效果比较(从左到右分别是原图、THPF、CS、IRLMS、真值图像;从上到下行分别是该系列图像的第10、20、50、100帧)

    Figure 12.  Performance comparisons of different algorithms, from left to right: Original, THPF, CS, IRLMS, Ground-truth images; from top to bottom: the 10th, 20th, 50th, 100th frame in the series of images.

    表  1  不同旋转或缩放范围对增益估计准确性的影响

    Table  1.   Influence of various ranges of random rotation or scaling on estimation correctness of gain coefficient

    随机旋转范围±1°±2°±3°±4°
    MSE0.94241.24221.58482.1789
    随机缩放范围1±0.011±0.021±0.031±0.04
    MSE0.03570.59160.89111.0302
    下载: 导出CSV

    表  2  各种算法处理后图像的平均对比度(全局标准差)

    Table  2.   Average contrasts (global standard deviation) of the image processed by various algorithms

    算法OriginalTHPFCSIRLMS真值
    GSTD0.15240.14960.16060.16740.1684
    下载: 导出CSV

    表  3  各种算法处理后图像的平均峰值信噪比

    Table  3.   Average PSNRs of the images processed by various algorithms (dB)

    算法OriginalTHPFCSIRLMS
    PSNR20.194915.282615.187138.1842
    下载: 导出CSV

    表  4  各种算法处理后图像的平均结构相似性

    Table  4.   Average SSIMs of the images processed by various algorithms

    算法OriginalTHPFCSIRLMS
    SSIM0.94310.30420.30020.9974
    下载: 导出CSV
  • CHEN C L P, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581. doi: 10.1109/TGRS.2013.2242477
    杨会玲, 吴玉宏, 孙慧婷, 等. 基于杂波抑制的海平线红外弱小目标检测[J]. 液晶与显示,2017,32(4):316-324. doi: 10.3788/YJYXS20173204.0316

    YANG H L, WU Y H, SUN H T, et al. Small dim infrared target detection of horizon region based on clutter rejection[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(4): 316-324. (in Chinese) doi: 10.3788/YJYXS20173204.0316
    QIN Y, LI B. Effective infrared small target detection utilizing a novel local contrast method[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1890-1894. doi: 10.1109/LGRS.2016.2616416
    HU J, XU ZH ZH, WAN Q Q. Non-uniformity correction of infrared focal plane array in point target surveillance systems[J]. Infrared Physics &Technology, 2014, 66: 56-69. doi: 10.1016/j.infrared.2014.05.012
    韩亚君, 杨德东, 李勇, 等. 基于多特征融合相关滤波的红外目标跟踪[J]. 液晶与显示,2019,34(2):177-187. doi: 10.3788/YJYXS20193402.0177

    HAN Y J, YANG D D, LI Y, et al. Infrared target tracking based on correlation filter with multi-features fusion[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(2): 177-187. (in Chinese) doi: 10.3788/YJYXS20193402.0177
    李一芒, 何昕, 魏仲慧. 红外预警实时图像处理系统设计与实现[J]. 液晶与显示,2013,28(1):110-114. doi: 10.3788/YJYXS20132801.0110

    LI Y M, HE X, WEI ZH H, et al. Design and implement of real-time image processing system for IR warning system based on multi-passage[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(1): 110-114. (in Chinese) doi: 10.3788/YJYXS20132801.0110
    宁永慧, 郭永飞, 曲利新, 等. 多通道时间延迟积分CCD辐射标定和像元实时处理[J]. 光学 精密工程,2015,23(10):2952-2961. doi: 10.3788/OPE.20152310.2952

    NING Y H, GUO Y F, QU L X, et al. Radiometric calibration and pixel data real-time processing of multi-tip TDICCD[J]. Optics and Precision Engineering, 2015, 23(10): 2952-2961. (in Chinese) doi: 10.3788/OPE.20152310.2952
    ZHANG T X, SHI CH CH, LI J J, et al. Overview of research on the adaptive algorithms for nonuniformity correction of infrared focal plane array[J]. Journal of Infrared and Millimeter Waves, 2007, 26(6): 409-413.
    王文华, 何斌, 韩双丽, 等. 星上CCD成像非均匀性的实时校正[J]. 光学 精密工程,2010,18(6):1420-1428.

    WANG W H, HE B, HAN SH L, et al. Real-time correction of nonuniformity in CCD imaging for remote sensing[J]. Optics and Precision Engineering, 2010, 18(6): 1420-1428. (in Chinese)
    ZHOU B, MA Y, LI H, et al. A study of two-point multi-section non-uniformity correction auto division algorithm for infrared images[J]. Proceedings of SPIE, 2010, 7658: 76583X. doi: 10.1117/12.866403
    李赓飞, 李桂菊, 韩广良, 等. 红外成像系统的非均匀性实时校正[J]. 光学 精密工程,2016,24(11):2841-2847. doi: 10.3788/OPE.20162411.2841

    LI G F, LI G J, HAN G L, et al. Real-time non-uniformity correction of infrared imaging system[J]. Optics and Precision Engineering, 2016, 24(11): 2841-2847. (in Chinese) doi: 10.3788/OPE.20162411.2841
    QIAN W X, CHEN Q, GU G H. Space low-pass and temporal high-pass nonuniformity correction algorithm[J]. Optical Review, 2010, 17(1): 24-29. doi: 10.1007/s10043-010-0005-8
    HARRIS J G, CHIANG Y M. Nonuniformity correction using the constant-statistics constraint: analog and digital implementations[J]. Proceedings of SPIE, 1997, 3061: 895-905. doi: 10.1117/12.280308
    ZUO CH, CHEN Q, GU G H, et al. Scene-based nonuniformity correction algorithm based on interframe registration[J]. Journal of the Optical Society of America A, 2011, 28(6): 1164-1176. doi: 10.1364/josaa.28.001164
    OKORIE A, MAKROGIANNIS S. Region-based image registration for remote sensing imagery[J]. Computer Vision and Image Understanding, 2019, 189: 102825. doi: 10.1016/j.cviu.2019.102825
    ZUO CH, CHEN Q, GU G H, et al. Improved interframe registration based nonuniformity correction for focal plane arrays[J]. Infrared Physics &Technology, 2012, 55(4): 263-269. doi: 10.1016/j.infrared.2012.04.002
    PELI E. Contrast in complex images[J]. Journal of the Optical Society of America A, 1990, 7(10): 2032-2040. doi: 10.1364/josaa.7.002032
    DAOUD A O, TSEHAYAE A A, FAYEK A R. A guided evaluation of the impact of research and development partnerships on university, industry, and government[J]. Canadian Journal of Civil Engineering, 2017, 44(4): 253-263. doi: 10.1139/cjce-2016-0381
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1539
  • HTML全文浏览量:  470
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 修回日期:  2020-07-15
  • 网络出版日期:  2020-08-27
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回