留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膜层对熔石英表面损伤修复点光调制性能调控研究

蒋勇 廖威 王毕艺 赵万利 刘强虎 邱荣 郭德成 周磊 周强 张远恒

蒋勇, 廖威, 王毕艺, 赵万利, 刘强虎, 邱荣, 郭德成, 周磊, 周强, 张远恒. 膜层对熔石英表面损伤修复点光调制性能调控研究[J]. 中国光学. doi: 10.37188/CO.2020-0110
引用本文: 蒋勇, 廖威, 王毕艺, 赵万利, 刘强虎, 邱荣, 郭德成, 周磊, 周强, 张远恒. 膜层对熔石英表面损伤修复点光调制性能调控研究[J]. 中国光学. doi: 10.37188/CO.2020-0110
JIANG Yong, LIAO Wei, WANG Bi-yi, ZHAO Wan-li, LIU Qiang-hu, QIU Rong, GUO De-cheng, ZHOU Lei, ZHOU Qiang, ZHANG Yuan-heng. Light modulation performance control of the coating on the repaired damage sites in fused silica surface[J]. Chinese Optics. doi: 10.37188/CO.2020-0110
Citation: JIANG Yong, LIAO Wei, WANG Bi-yi, ZHAO Wan-li, LIU Qiang-hu, QIU Rong, GUO De-cheng, ZHOU Lei, ZHOU Qiang, ZHANG Yuan-heng. Light modulation performance control of the coating on the repaired damage sites in fused silica surface[J]. Chinese Optics. doi: 10.37188/CO.2020-0110

膜层对熔石英表面损伤修复点光调制性能调控研究

doi: 10.37188/CO.2020-0110
基金项目: 国家自然科学科学基金资助项目(No. 11972313,No. 61775235,No. 61705205,No. 61505170);国防基础科研计划项目(No. JCKY2020210C005);四川省大学生创新创业训练资助项目(No. S202010619071, No. S201910619039);西南科技大学龙山人才计划资助项目(No. 18lzx516)
详细信息
    作者简介:

    蒋勇:蒋 勇(1982—),男,四川仁寿人,博士,副教授,2012年于电子科技大学获得博士学位,主要从事强激光与物质相互作用的理论与实验方面的研究工作。E-mail:y_jiang@swust.edu.cn

  • 中图分类号: O439

Light modulation performance control of the coating on the repaired damage sites in fused silica surface

Funds: Supported by National Natural Science Foundation of China (No. 11972313, No. 61775235, No. 61705205, No. 61505170); National Defense Basic Scientific Research Project (No. JCKY2020210C005), Sichuan University Students’ Innovation and Entrepreneurship Training Program (No. s202010619071, No. s201910619039) and Longshan Talent Program of Southwest University of science and Technology (No. 18lzx516)
More Information
  • 摘要: 针对CO2激光修复熔石英表面损伤点后得到的修复点(简称损伤修复点)产生的光调制问题,重点研究损伤修复点在镀增透膜前后的形貌及光调制的变化规律,探讨修复点深度、宽度等形貌因素对SiO2胶体在修复点坑内沉积的影响,以及对光调制效应的影响。研究结果表明:胶体材料在损伤修复点坑内具有明显的富集效应,可有效改善损伤修复点的形貌尺寸,尤其是对深度的影响尤为明显。这虽然会导致损伤修复点镀膜后最大光调制位置的增大,但该最大光调制却远小于相应未镀膜损伤修复点引起的调制度。研究结果对进一步优化熔石英表面损伤点的修复工艺及光调制度控制提供参考。
  • 图  1  测量光路示意图

    Figure  1.  Schematic diagram of the test system

    图  2  未镀膜损伤修复点(a)及镀膜修复点(b)的光学显微形貌图

    Figure  2.  Morphology graphs of un-coated (a) and coated (b) repaired damage site

    图  3  损伤修复点镀膜前后的轮廓图

    Figure  3.  Profile of repaired damage site before and after coating

    图  4  未镀膜损伤修复点在不同位置处的衍射图像

    Figure  4.  Diffraction images of the un-coated repaired damage site at different locations

    图  5  镀膜修复点在不同位置处的衍射图像

    Figure  5.  Diffraction images of the coated repaired damage site at different locations

    图  6  损伤修复点镀膜前(矩形图标)后(圆形图标)调制度随距离的演化曲线

    Figure  6.  The evolution curve of modulation over distance of repaired damage site before (rectangle) and after (circle) coating

    图  7  不同形貌损伤修复点光调制随距离的演化曲线

    Figure  7.  The relationships between the modulation of the repaired damage site with different morphologies and distance

    图  8  损伤修复点镀膜前后坑深度的变化规律

    Figure  8.  Change of crater depth of the repaired site before and after coating

    图  9  镀膜前后损伤修复点最大光调制的变化规律

    Figure  9.  Change of the maximum light modulation of the repaired site before and after coating

    表  1  损伤修复点镀膜前后参数与最大光调制度

    Table  1.   Parameters of the repaired site before and after coating vs. the maximum modulation

    对应图号深度/μm宽度/mm最大调制度
    未镀膜修复点图35.150.866.2
    图7(a1)5.840.96.7
    图7(b1)8.910.78.9
    镀膜修复点图32.970.84.8
    图7(a1)4.050.85.5
    图7(b1)6.550.77.1
    下载: 导出CSV
  • [1] 董家宁, 范杰, 王海珠, 等. 高反射光学薄膜激光损伤研究进展[J]. 中国光学,2018,11(6):931-948. doi: 10.3788/co.20181106.0931

    DONG J N, FAN J, WANG H ZH, et al. Research progress in laser damage of high reflective optical thin films[J]. Chinese Optics, 2018, 11(6): 931-948. (in Chinese) doi: 10.3788/co.20181106.0931
    [2] 王超, 张一杨, 张雅静, 等. 掺Yb3+石英玻璃中非桥氧空穴缺陷特性的研究[J]. 发光学报,2018,39(10):1359-1364. doi: 10.3788/fgxb20183910.1359

    WANG CH, ZHANG Y Y, ZHANG Y J, et al. Characteristics of non-bridging oxygen hole centers defects in Yb3+-doped silica glass[J]. Chinese Journal of Luminescence, 2018, 39(10): 1359-1364. (in Chinese) doi: 10.3788/fgxb20183910.1359
    [3] BETTI R, HURRICANE O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736
    [4] ZHENG W G, WEI X F, ZHU Q H, et al. Laser performance of the SG-III laser facility[J]. High Power Laser Science and Engineering, 2016, 4: e21. doi: 10.1017/hpl.2016.20
    [5] 王玺, 李志明, 谢运涛, 等. 紫外准分子激光损伤典型光学材料的特性分析[J]. 发光学报,2018,39(5):692-698. doi: 10.3788/fgxb20183905.0692

    WANG X, LI ZH M, XIE Y T, et al. Characteristics of typical optical materials damaged by ultraviolet excimer laser[J]. Chinese Journal of Luminescence, 2018, 39(5): 692-698. (in Chinese) doi: 10.3788/fgxb20183905.0692
    [6] 田润妮, 邱荣, 蒋勇, 等. 熔石英亚表面球形杂质对入射光场的调制作用[J]. 光学学报,2015,35(4):0414003. doi: 10.3788/AOS201535.0414003

    TIAN R N, QIU R, JIANG Y, et al. Light field modulation induced by spherical inclusion in fused silica subsurface[J]. Acta Optica Sinica, 2015, 35(4): 0414003. (in Chinese) doi: 10.3788/AOS201535.0414003
    [7] CHENG X B, ZHANG J L, DING T, et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light:Science &Applications, 2013, 2(6): e80.
    [8] ZHU ZH W, CHENG X G, HUANG L J, et al. Light field intensification induced by nanoinclusions in optical thin-films[J]. Applied Surface Science, 2012, 258(12): 5126-5130. doi: 10.1016/j.apsusc.2012.01.145
    [9] 孙晓艳, 雷泽民, 卢兴强, 等. 表面颗粒污染物诱导薄光学元件初始损伤的机理[J]. 物理学报,2014,63(13):134201.

    SUN X Y, LEI Z M, LU X Q, et al. Mechanism of original damage of thin optical components induced by surface particle contamination[J]. Acta Physica Sinica, 2014, 63(13): 134201. (in Chinese)
    [10] CHENG J, CHEN M J, LIAO W, et al. Influence of surface cracks on laser-induced damage resistance of brittle KH2PO4 crystal[J]. Optics Express, 2014, 22(23): 28740-28755. doi: 10.1364/OE.22.028740
    [11] GÉNIN F Y, SALLEO A, PISTOR T V, et al. Role of light intensification by cracks in optical breakdown on surfaces[J]. Journal of the Optical Society of America A, 2001, 18(10): 2607-2616. doi: 10.1364/JOSAA.18.002607
    [12] FEIGENBAUM E, ELHADJ S, MATTHEWS J M. Light scattering from laser induced pit ensembles on high power laser optics[J]. Optics Express, 2015, 23(8): 10589-10597. doi: 10.1364/OE.23.010589
    [13] ZHENG Y, MA P, LI H B, et al. Studies on transmitted beam modulation effect from laser induced damage on fused silica optics[J]. Optics Express, 2013, 21(14): 16605-16614. doi: 10.1364/OE.21.016605
    [14] HARRIS C D, SHEN N, RUBENCHIK A M, et al. Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces[J]. Optics Letter, 2015, 40(22): 5212-5215. doi: 10.1364/OL.40.005212
    [15] CORMONT P, COMBIS P, GALLAIS L, et al. Removal of scratches on fused silica optics by using a CO2 laser[J]. Optics Express, 2013, 21(23): 28272-28289. doi: 10.1364/OE.21.028272
    [16] LIU CH M, YAN ZH H, YANG L, et al. Mitigation scratch on fused silica optics using CO2 laser[J]. Optica Applicata, 2016, 46(3): 387-397.
    [17] CORMONT P, BOURGEADE A, CAVARO S, et al. Relevance of carbon dioxide laser to remove scratches on large fused silica polished optics[J]. Advanced Engineering Materials, 2015, 17(3): 253-259. doi: 10.1002/adem.201400383
    [18] JIANG Y, XIANG X, LIU CH M, et al. Two localized CO2 laser treatment methods for mitigation of UV damage growth in fused silica[J]. Chinese Physics B, 2012, 21(6): 064219. doi: 10.1088/1674-1056/21/6/064219
    [19] JIANG Y, LIU CH M, LUO CH S, et al. Mitigation of laser damage growth in fused silica by using a non-evaporative technique[J]. Chinese Physics B, 2012, 21(5): 054216. doi: 10.1088/1674-1056/21/5/054216
    [20] DOUALLE T, GALLAIS L, MONNERET S, et al. CO2 laser microprocessing for laser damage growth mitigation of fused silica optics[J]. Optical Engineering, 2016, 56(1): 011022.
    [21] 白阳, 张丽娟, 廖威, 等. 熔石英损伤修复坑下游光场调制的数值模拟与实验研究[J]. 物理学报,2016,65(2):024205. doi: 10.7498/aps.65.024205

    BAI Y, ZHANG L J, LIAO W, et al. Study of downstream light intensity modulation induced by mitigated damage pits of fused silica using numerical simulation and experimental measurements[J]. Acta Physica Sinica, 2016, 65(2): 024205. (in Chinese) doi: 10.7498/aps.65.024205
    [22] GAO X, JIANG Y, QIU R, et al. Effect of the repaired damage morphology of fused silica on the modulation of incident laser[J]. Optical Materials, 2017, 64: 295-301. doi: 10.1016/j.optmat.2016.12.032
    [23] LIAO W, LI B, ZHOU Q Y, et al. Optical modulation study of repaired damage morphologies of fused silica by scalar diffraction theory[J]. Optical Engineering, 2017, 56(1): 016113. doi: 10.1117/1.OE.56.1.016113
    [24] 蒋勇, 向霞, 刘春明, 等. 熔石英表面损伤修复点上烧蚀碎片的分类与去除的研究[J]. 中国激光,2012,39(12):1203003. doi: 10.3788/CJL201239.1203003

    JIANG Y, XIANG X, LIU CH M, et al. Classification and elimination of ablation debris on the mitigated damage site in fused silica surface[J]. Chinese Journal of Lasers, 2012, 39(12): 1203003. (in Chinese) doi: 10.3788/CJL201239.1203003
    [25] 蒋勇. 熔石英光学元件表面损伤修复的理论和实验研究[D]. 成都: 电子科技大学, 2012: 173-179.

    JIANG Y. Theoretical and experimental studies on surface damage repaire of fused silica optical components[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 173-179. (in Chinese).
    [26] GUSS G, BASS I, DRAGGOO V, et al. Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser[J]. Proceedings of SPIE, 2007, 6403: 64030M.
    [27] JIANG Y, MU X Y, QIU R, et al. Comparison of bare and sol-gel coated of mitigated site on fused silica[J]. Proceedings of SPIE, 2015, 9543: 95430M. doi: 10.1117/12.2177808
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  55
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-29
  • 修回日期:  2020-07-27
  • 网络出版日期:  2020-12-07

目录

    /

    返回文章
    返回