留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国遥感卫星辐射校正场敦煌戈壁场区光环境变化研究

李元 张勇 胡丽琴 陆其峰 卢乃锰

李元, 张勇, 胡丽琴, 陆其峰, 卢乃锰. 中国遥感卫星辐射校正场敦煌戈壁场区光环境变化研究[J]. 中国光学(中英文), 2021, 14(5): 1231-1242. doi: 10.37188/CO.2020-0129
引用本文: 李元, 张勇, 胡丽琴, 陆其峰, 卢乃锰. 中国遥感卫星辐射校正场敦煌戈壁场区光环境变化研究[J]. 中国光学(中英文), 2021, 14(5): 1231-1242. doi: 10.37188/CO.2020-0129
LI Yuan, ZHANG Yong, HU Li-qin, LU Qi-feng, LU Nai-meng. Investigation of optical environment changes in the Dunhuang gobi site of the Chinese radiometric calibration sites[J]. Chinese Optics, 2021, 14(5): 1231-1242. doi: 10.37188/CO.2020-0129
Citation: LI Yuan, ZHANG Yong, HU Li-qin, LU Qi-feng, LU Nai-meng. Investigation of optical environment changes in the Dunhuang gobi site of the Chinese radiometric calibration sites[J]. Chinese Optics, 2021, 14(5): 1231-1242. doi: 10.37188/CO.2020-0129

中国遥感卫星辐射校正场敦煌戈壁场区光环境变化研究

基金项目: 国家重点研发计划课题(No. 2018YFB0504601);国家自然基金委员会面上项目(No. 41271373);民用航天“十三五”技术预先研究项目(No. D040401);上海航天科技创新基金资助项目(No. SAST2019-044)
详细信息
    作者简介:

    李 元(1978—),女,北京人,工学博士,国家卫星气象中心副研究员,2001年,2006年于北京理工大学分别获学士,博士学位,主要从事在轨遥感器定标与产品反演等方面的研究。E-mail:liyuan@cma.gov.cn

    张 勇(1977—),男,陕西镇巴人,理学博士,国家卫星气象中心研究员,2000年,2003年于西北大学分别获学士,硕士学位,2006年于中国科学院遥感应用研究所获博士学位,主要从事卫星遥感器辐射定标与真实性检验方面的研究。E-mail:zhangyong@cma.gov.cn

  • 中图分类号: O432.1; P422.1

Investigation of optical environment changes in the Dunhuang gobi site of the Chinese radiometric calibration sites

Funds: Supported by National Key Research and Development Project (No. 2018YFB0504601); National Natural Science Foundation of China General Project (No. 41271373); Civil Aerospace “Thirteenth Five-Year” Technology Pre-research Project (No. D040401); Shanghai Aerospace Science and Technology Innovation Fund Project (No. SAST2019-044)
More Information
  • 摘要: 为有效评估集热塔散射辐射对敦煌场区光环境的影响程度,本文采用Monte Carlo三维辐射传输模型模拟与CE318多通道光度计等高线实测分析相结合的定量分析方法,以解决散射辐射交融于背景辐射中难以定量评估的问题。通过使用新型的ASC200云量自动观测仪,提高晴空辩识精度。通过开发CE318四象限定位修正算法,有效提高观测数据质量。2020年1~3月收集到的有效数据显示除了550 nm通道,集热塔未对天空漫射辐射产生明显影响。对于500 nm通道,在有效数据对应的观测几何下(距离0.87~3.07 km,观测天顶角为77.30°~51.32°),集热塔吸热器对天空漫射辐射的影响不超过0.93%。与模型模拟结果相结合进行分析,得出如下结论:当距离电站2 km时大电站散射辐射带来的天空漫射辐射相对变化<1.62%;当与电站距离≥3 km时相对变化<0.93%。本项研究成果对利用敦煌场开展遥感定量化应用、准确评估发电站引进的不确定度因素具有积极意义。

     

  • 图 1  在自动观测基地附近观察到的工作状态的集热塔

    Figure 1.  Heat collection tower in working condition observed from the automatic observation base

    图 2  等高线测量角度示意图

    Figure 2.  Schematic diagram of the almucantar measurement angle

    图 3  卫星观测到的集热塔反射光的辐射能量水平分布示例

    Figure 3.  An example of the radiant energy level distribution of the light reflected by the heat collection tower observed by the satellite

    图 4  2020年3月2日UTC 7:00:05时刻ASC200云量自动观测仪红外云图

    Figure 4.  Infrared cloud image obtained from ASC200 cloud cover automatic observer at 7:00:05 UTC on March 2, 2020

    图 5  归一化的全天空漫射辐射光谱与CE318不同通道光谱响应函数

    Figure 5.  Normalized full sky diffuse irradiance and CE318 spectral response function

    图 6  440 nm通道RdevBr为最小值(−2.07%)时对应时刻(03−09 09:59)的辐亮度(a)与相对偏差(b)

    Figure 6.  Radiance (a) and relative deviation (b) at the corresponding time (03−09 09:59) when the 440nm channel RdevBr is the minimum (−2.07%)

    图 7  500 nm通道RdevBr为最小值(−3.65%)时对应时刻(03−03 08:03)的辐亮度(a)与相对偏差(b)

    Figure 7.  Radiance (a) and relative deviation (b) at the corresponding time (03−03 08:03) when the 500 nm channel RdevBr is the minimum (−3.65%)

    图 8  500 nm通道RdevBr为最大值(0.93%)时对应时刻(01−25 09:04)的辐亮度(a)与相对偏差(b)

    Figure 8.  Radiance (a) and relative deviation (b) at the corresponding time (01−25 09:04) when the 500 nm channel RdevBr is the maximum (0.93%)

    表  1  模拟的相关参数定义

    Table  1.   Definitions of parameters in the simulation

    相关参数取值范围
    模拟区域范围11 km×11 km
    (设定集热塔位于模拟区域中心像元的中央)
    水平空间分辨率1 km
    反射光源性质离地面高度260 m;向上各角度随机发射
    计算波段0.55 μm
    大气背景中纬夏季大气考虑H2O、O2、O3气体吸收和
    大气分子瑞利散射
    气溶胶特性光学厚度0.1;单次散射反照率0.938;
    不对称因子0.764
    地表特性地表反照率0.2
    下载: 导出CSV

    表  2  CE318通道设置

    Table  2.   CE318 channel specifications

    编号中心波长/nm带宽/nm观测模式
    1102010S、A、K
    2164025S、A、K
    387010S、A、K
    467510S、A、K
    544010S、A、K
    650010S、A、K
    71020i10S
    893610S
    93802S
    103402S
    下载: 导出CSV

    表  3  CE318性能参数

    Table  3.   CE318 performance parameters

    项目内容
    视场1.2°
    探测器铟镓砷(InGaSn)探测器:1020i nm,
    1640 nm;硅探测器:其他
    工作温度−30~+ 60 °C
    太阳追踪方法四象限探测器主动跟踪
    跟踪精度优于0.1°
    天空漫射辐射
    观测频率
    固定时刻与大气质量数
    动态范围增益可调
    量化等级15
    下载: 导出CSV

    表  4  ASC200性能参数

    Table  4.   ASC200 performance parameters

    项目内容
    观测指标可见光云量、红外云量、综合云量
    红外波长8~14 μm
    视场角可见光180°,红外160°
    采样周期10 min
    工作温度−45~55 °C
    下载: 导出CSV

    表  5  HIM性能参数

    Table  5.   HIM performance parameters

    项目内容
    观测内容总天空辐照度,天空漫射辐照度,漫射/总漫射比
    波长400~2400 nm
    半高宽4 nm @ 400~950 nm,15 nm @ 950~1700 nm,
    20 nm @ 1700~2400 nm
    采样期6 min
    工作温度−30~60 °C
    信噪比≥600@ 400~1000 nm,≥300@ 1000~1700 nm,
    ≥200@ 1700~2400 nm(M = 2,非吸收通道)
    下载: 导出CSV

    表  6  观测数据的质量控制阈值

    Table  6.   Quality control threshold of observation data

    项目数值
    云量0
    光学厚度<0.2
    ALL与ALR相对偏差的标准差<1%
    相对偏差计算点与大小电站的投影距离>5 km
    太阳与大小电站的投影距离>2.5 km
    ALL与ALR观测时间差异<1 min
    下载: 导出CSV

    表  7  卫星观测到的集热塔反射光的辐射能量相对分布情况

    Table  7.   The relative distribution of the radiant energy of the light reflected by the heat collection tower observed by the satellite

    距离/km10°20°30°40°50°
    01.0000.7800.5490.3810.2770.202
    10.4340.3690.2850.1940.1790.162
    20.0350.0330.0330.0320.0370.047
    30.0200.0190.0200.0210.0230.027
    40.0160.0160.0160.0170.0200.023
    50.0150.0150.0150.0160.0180.021
    下载: 导出CSV

    表  8  各级筛选后有效观测数据量值统计(组)

    Table  8.   Statistics of effective observation data after being selected at different levels (group)

    筛选项目有效观测数据值合计
    1020 nm1640 nm870 nm675 nm440 nm500 nm
    (a)8047786114667875654011
    (b)135132815413570607
    (c)457747444344300
    (d)0316272259
    (e)0212221643
    (f)020114926
    (g)020114926
    (h)020114926
    下载: 导出CSV

    表  9  吸热器散射辐射带来的相对偏差(440 nm)

    Table  9.   Relative deviation due to scattered radiation from the heat absorber (440 nm)

    UTC TimeAODSz/(°)Sa/(°)Beta/(°)HB/kmonDegB/(°)DdegB/(°)RdevB/%RdevBr/%HS/kmonDegS/(°)DdegS/(°)RdevS/%RdevSr/%
    03−10 08:590.1561.83235.340.072.06185.374.63−1.18−1.081.540124.874.87−0.29−0.31
    03−10 07:590.1453.28220.750.112.86170.770.77−1.14−0.922.140110.279.73−1.57−1.49
    03−10 06:590.1547.20202.900.133.55152.922.92−0.04 0.312.65092.422.42−1.37−1.18
    03−09 10:270.1777.14252.070.090.881102.092.09−0.70−0.720.660141.591.59 0.24 0.14
    03−09 09:590.1572.12247.040.121.24197.062.94−2.11−2.070.930136.563.44−0.63−0.74
    03−02 09:020.1564.41233.460.061.84183.483.48−0.51−0.421.381122.982.98−1.23−1.24
    03−02 07:020.1850.22202.090.133.19152.122.12−0.20 0.192.390 91.621.62−1.47−1.28
    02−27 10:140.1477.10246.640.090.88196.663.34−0.89−0.870.660136.163.84−0.75−0.84
    02−27 09:020.1665.23232.610.161.77182.632.63−1.47−1.231.330122.132.13 0.47 0.39
    02−27 08:020.1957.00218.410.092.49168.431.57 0.09 0.301.860107.937.93 1.33 1.38
    02−27 07:020.1851.24201.490.083.08151.511.51−0.51−0.292.300 91.021.02−0.61−0.50
    01−25 09:240.1676.61230.440.110.92180.460.46−0.18 0.000.690119.970.03−0.81−0.91
    01−25 09:030.1773.56226.290.061.13176.323.68−0.14−0.030.850115.824.18−0.60−0.64
    01−10 07:560.1968.63211.650.041.50061.671.67−1.02−0.891.121101.171.17−0.44−0.43
    下载: 导出CSV

    表  10  吸热器散射辐射带来的相对偏差(500 nm)

    Table  10.   Relative deviation due to scattered radiation from the heat absorber (500 nm)

    UTC TimeAODSz/(°)Sa/(°)Beta/(°)HB/kmonDegB/(°)DdegB/(°)RdevB/%RdevBr/%HS/kmonDegS/(°)DdegS/(°)RdevS/%RdevSr/%
    03−10 09:000.1462.01235.590.122.04185.614.39−0.85−0.631.530125.115.11 0.88 0.87
    03−10 08:000.1453.42221.040.252.85171.061.06−0.74−0.142.130110.569.44−1.19−0.97
    03−03 08:030.1555.92219.770.142.60169.800.20−4.01−3.651.940109.309.30−1.21−1.10
    02−27 10:160.1477.30246.840.080.87196.863.14 0.29 0.320.650136.363.64−0.10−0.18
    02−27 07:030.1651.32201.840.143.07151.861.86−2.24−1.812.290 91.361.36−0.46−0.22
    01−25 09:250.1576.80230.690.170.90180.710.71 0.57 0.880.680120.210.21−0.09−0.21
    01−25 09:040.1673.72226.510.111.12176.543.46 0.68 0.930.840116.043.96−0.20−0.25
    01−10 08:580.1775.87224.520.080.97074.544.54 0.49 0.710.721114.045.96 0.31 0.28
    01−10 07:570.1768.75211.920.071.49061.94 1.94−0.50−0.251.121101.441.44−0.02 0.01
    下载: 导出CSV

    表  11  大电站散射辐射带来的天空漫射辐射相对变化随距离与观测角度变化(%)

    Table  11.   The relative change of the sky diffuse radiation caused by the scattered radiation from the large power station changes with distance and the observation angle (%)

    距离/km天空漫射辐射相对变化(%)
    10°20°30°40°50°
    034.4426.8718.9113.129.546.96
    114.9512.719.826.686.175.58
    21.211.141.141.101.271.62
    30.690.650.690.720.790.93
    40.550.550.550.590.690.79
    50.520.520.520.550.620.72
    下载: 导出CSV
  • [1] 张勇, 祁广利, 戎志国. 卫星红外遥感器辐射定标模型与方法[M]. 北京: 科学出版社, 2015.

    ZHANG Y, QI G L, RONG ZH G. Models and Methodologies of Radiometric Calibrations for Satellite Infrared Remote Sensors[M]. Beijing: Science Press, 2015. (in Chinese)
    [2] 卢乃锰, 谷松岩. 气象卫星发展回顾与展望[J]. 遥感学报,2016,20(5):832-841.

    LU N M, GU S Y. Review and prospect on the development of meteorological satellites[J]. Journal of Remote Sensing, 2016, 20(5): 832-841. (in Chinese)
    [3] ZAHNG Y, LI ZH L, LI J. Comparisons of emissivity observations from satellites and the ground at the CRCS Dunhuang Gobi site[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(22): 13026-13041. doi: 10.1002/2014JD022216
    [4] HU X Q, LIU J J, SUN L, et al. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors[J]. Canadian Journal of Remote Sensing, 2010, 36(5): 566-582. doi: 10.5589/m10-087
    [5] 张勇, 李元, 戎志国, 等. 中国遥感卫星辐射校正场陆表热红外发射率光谱野外测量[J]. 光谱学与光谱分析,2009,29(5):1213-1217. doi: 10.3964/j.issn.1000-0593(2009)05-1213-05

    ZHANG Y, LI Y, RONG ZH G, et al. Field measurement of gobi surface emissivity spectrum at Dunhuang calibration site of China[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1213-1217. (in Chinese) doi: 10.3964/j.issn.1000-0593(2009)05-1213-05
    [6] 张勇, 戎志国, 闵敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展,2016,31(2):171-179. doi: 10.11867/j.issn.1001-8166.2016.02.0171

    ZHANG Y, RONG ZH G, MIN M. Accuracy evaluations of the CRCS In-orbit field radiometric calibration methods for thermal infrared channels[J]. Advances in Earth Science, 2016, 31(2): 171-179. (in Chinese) doi: 10.11867/j.issn.1001-8166.2016.02.0171
    [7] ZHANG Y X, ZHANG G SH, LIU ZH Q, et al. Spectral reflectance measurements at the China radiometric calibration test site for the remote sensing satellite sensor[J]. Acta Meteorologica Sinica, 2001, 15(3): 377-382.
    [8] 李元, 戎志国, 郑照军, 等. FY-3A扫描辐射计的可见近红外通道在轨场地定标[J]. 光学 精密工程,2009,17(12):2966-2974.

    LI Y, RONG ZH G, ZHENG ZH J, et al. Post launch site calibration of visible and near-infrared channels of FY-3A visible and infrared radiometers[J]. Optics and Precision Engineering, 2009, 17(12): 2966-2974. (in Chinese)
    [9] 李元, 张勇, 刘京晶, 等. 风云二号静止气象卫星可见光通道辐射校正场定标方法研究[J]. 光学学报,2009,29(1):41-46. doi: 10.3788/AOS20092901.0041

    LI Y, ZHANG Y, LIU J J, et al. Calibration of the visible and near-infrared channels of the FY-2C/FY-2D GEO meteorological satellite at radiometric site[J]. Acta Optica Sinica, 2009, 29(1): 41-46. (in Chinese) doi: 10.3788/AOS20092901.0041
    [10] 孙凌, 郭茂华, 徐娜, 等. 基于敦煌场地定标的FY-3 MERSI反射太阳波段在轨响应变化分析[J]. 光谱学与光谱分析,2012,32(7):1869-1877. doi: 10.3964/j.issn.1000-0593(2012)07-1869-09

    SUN L, GUO M H, XU N, et al. On-orbit response variation analysis of FY-3 MERSI reflective solar bands based on Dunhuang site calibration[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1869-1877. (in Chinese) doi: 10.3964/j.issn.1000-0593(2012)07-1869-09
    [11] HAN Q J, ZHANG X W, LIU L, et al. Lifetime radiometric calibration of HJ-1A/B CCD sensor using Dunhuang Gobi site[J]. Proceedings of SPIE, 2014, 9299: 92990B.
    [12] ZHANG X W, HAN Q J, LIU L. Using the Dunhuang test site to monitor the radiometric stability of the ZY-3 multispectral sensor[J]. Proceedings of SPIE, 2014, 9298: 92980H.
    [13] CHEN ZH CH, ZHANG B, ZHANG H, et al. Vicarious calibration of Beijing-1 multispectral imagers[J]. Remote Sensing, 2014, 6(2): 1432-1450. doi: 10.3390/rs6021432
    [14] LI Y, RONG ZH G, LI Y Q, et al. Solar reflection band site automatic calibration by the Dunhuang site automatic observation radiometric calibration operational system[J]. Proceedings of SPIE, 2019, 11127: 111271M.
    [15] LI Y, RONG Z G, LI Y Q, et al.. Introduction of Dunhuang site automatic observation radiometric calibration operational system (DARCOS)[C]. Proceedings of CEOS-WGCV-IVOS Meeting 31, 2019.
    [16] 吕佳彦, 何明元, 陈林, 等. 基于敦煌辐射校正场的自动化辐射定标方法[J]. 光学学报,2017,37(8):0801003. doi: 10.3788/AOS201737.0801003

    LÜ J Y, HE M Y, CHEN L, et al. Automated radiation calibration method based on Dunhuang radiometric calibration site[J]. Acta Optica Sinica, 2017, 37(8): 0801003. (in Chinese) doi: 10.3788/AOS201737.0801003
    [17] 邱刚刚, 李新, 韦玮, 等. 基于场地自动化观测技术的遥感器在轨辐射定标试验与分析[J]. 光学学报,2016,36(7):0701001. doi: 10.3788/AOS201636.0701001

    QIU G G, LI X, WEI W, et al. Experiment and analysis of on-orbit radiometric calibration for remote sensors based on in-site automated observation technology[J]. Acta Optica Sinica, 2016, 36(7): 0701001. (in Chinese) doi: 10.3788/AOS201636.0701001
    [18] ZHANG Y, LI X, RONG ZH G, et al. China radiometric calibration sites ground-based automatic observing systems for CAL/VA[J]. Proceedings of SPIE, 2015, 9639: 96391E. doi: 10.1117/12.2194633
    [19] 敦煌市委宣传部. 敦煌首航节能10兆瓦塔式熔盐光热发电项目有序推进[EB/OL]. (2015-05-04). http://www.cspplaza.com/article-5110-1.html.

    The Publicity Department of Dunhuang municipal Party committee. The energy-saving 10 MW tower molten salt solar thermal power generation project of Dunhuang Capital Airlines was promoted in an orderly manner[EB/OL]. (2015-05-04). http://www. cspplaza.com/article-5110-1.html.
    [20] 环球网. 敦煌100 MW塔式熔盐光热电站土建完成进入安装环节[EB/OL]. (2018-05-18). https://baijiahao.baidu.com/s?id=1600755797116589317&wfr=spider&for=pc.

    Global network. The civil engineering of Dunhuang 100MW tower molten salt optical thermal power station has been completed and entered the installation link[EB/OL]. (2018-05-18). https://baijiahao.baidu. com/s?id=1600755797116589317&wfr=spider&for=pc.
    [21] 胡丽琴. 风云四号卫星闪电辐射观测的辐射传输模拟研究[C]. 2011年第二十八届中国气象学会年会论文集, 中国气象学会, 2011: 1-10.

    HU L Q. Radiative transfer simulation of the Fengyun-4 lightning radiation observation[C]. Proceedings of the 28th Annual Meeting of the Chinese Meteorological Society, Chinese Meteorological Society, 2011: 1-10. (in Chinese)
    [22] YAO W X, LI ZH R, ZHAO Q, et al. A new anisotropic diffuse radiation model[J]. Energy Conversion and Management, 2015, 95: 304-313. doi: 10.1016/j.enconman.2015.01.016
    [23] Cimel. Multiband photometer CE318-T User’s Manual (rev. January 2018) [EB/OL]. (2021-8-16). https://aeronet.gsfc.nasa.gov/new_web/Documents/CE318_T_Photometer_UserManual_V4.3.pdf.
    [24] FA T, XIE W Y, WANG Y R, et al. Development of an all-sky imaging system for cloud cover assessment[J]. Applied Optics, 2019, 58(20): 5516-5524. doi: 10.1364/AO.58.005516
    [25] ESTELLES V, CAMPANELLI M, UTRILLAS M P, et al. Comparison of AERONET and SKYRAD4.2 inversion products retrieved from a Cimel CE318 sunphotometer[J]. Atmospheric Measurement Techniques, 2012, 5(3): 569-579. doi: 10.5194/amt-5-569-2012
    [26] BARRETO Á, CUEVAS E, GRANADOS-MUÑOZ M J, et al. The new sun-sky-lunar Cimel CE318-T multiband photometer – A comprehensive performance evaluation[J]. Atmospheric Measurement Techniques, 2016, 9(2): 631-654. doi: 10.5194/amt-9-631-2016
  • 加载中
图(8) / 表(11)
计量
  • 文章访问数:  1730
  • HTML全文浏览量:  576
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 修回日期:  2021-07-21
  • 网络出版日期:  2021-08-21
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回