Investigation of optical environment changes in the Dunhuang gobi site of the Chinese radiometric calibration sites
-
摘要: 为有效评估集热塔散射辐射对敦煌场区光环境的影响程度,本文采用Monte Carlo三维辐射传输模型模拟与CE318多通道光度计等高线实测分析相结合的定量分析方法,以解决散射辐射交融于背景辐射中难以定量评估的问题。通过使用新型的ASC200云量自动观测仪,提高晴空辩识精度。通过开发CE318四象限定位修正算法,有效提高观测数据质量。2020年1~3月收集到的有效数据显示除了550 nm通道,集热塔未对天空漫射辐射产生明显影响。对于500 nm通道,在有效数据对应的观测几何下(距离0.87~3.07 km,观测天顶角为77.30°~51.32°),集热塔吸热器对天空漫射辐射的影响不超过0.93%。与模型模拟结果相结合进行分析,得出如下结论:当距离电站2 km时大电站散射辐射带来的天空漫射辐射相对变化<1.62%;当与电站距离≥3 km时相对变化<0.93%。本项研究成果对利用敦煌场开展遥感定量化应用、准确评估发电站引进的不确定度因素具有积极意义。Abstract: In order to effectively evaluate the influence of scattered radiation of the heat collection tower on the optical environment of the Dunhuang Gobi Site of the Chinese Radiometric Calibration Sites (CRCS), the Monte Carlo three-dimensional radiation transmission model simulation combined with in situ CE318 multi-channel photometer almucantar measurements was applied to solve the problem that it is difficult to quantitatively evaluate the scattered radiation mixed with the background radiation. By measuring the data with a new cloud cover automatic observing instrument ASC200, the accuracy of clear sky measurements improved, and the development of the CE318 four-quadrant location correction algorithm effectively increased the amount of valid data that meets our threshold requirements. The effective data collected from January to March 2020 shows that the molten salt tower Concentrating Solar Power (CSP) project has no significant impact on the sky diffuse radiation outside the 550nm channel. In the 500 nm channel, under the geometric parameters corresponding to the valid data (distance 0.87−3.07 km, observation zenith angle 77.30−51.32º), the impact of the molten salt tower heat absorber on diffuse sky radiation does not exceed 0.93%. Combined with the analysis of the model simulation results, it can be concluded that the relative change of the sky diffuse radiation caused by the scattered radiation of the large power station is less than 1.62% at 2 km away, and the relative change is less than 0.93% when it is at least 3 km away. The research results have positive significance for the use of Dunhuang Site to conduct quantitative applications in remote sensing and the accurate evaluation of the uncertainties introduced by power stations.
-
表 1 模拟的相关参数定义
Table 1. Definitions of parameters in the simulation
相关参数 取值范围 模拟区域范围 11 km×11 km
(设定集热塔位于模拟区域中心像元的中央)水平空间分辨率 1 km 反射光源性质 离地面高度260 m;向上各角度随机发射 计算波段 0.55 μm 大气背景 中纬夏季大气考虑H2O、O2、O3气体吸收和
大气分子瑞利散射气溶胶特性 光学厚度0.1;单次散射反照率0.938;
不对称因子0.764地表特性 地表反照率0.2 表 2 CE318通道设置
Table 2. CE318 channel specifications
编号 中心波长/nm 带宽/nm 观测模式 1 1020 10 S、A、K 2 1640 25 S、A、K 3 870 10 S、A、K 4 675 10 S、A、K 5 440 10 S、A、K 6 500 10 S、A、K 7 1020i 10 S 8 936 10 S 9 380 2 S 10 340 2 S 表 3 CE318性能参数
Table 3. CE318 performance parameters
项目 内容 视场 1.2° 探测器 铟镓砷(InGaSn)探测器:1020i nm,
1640 nm;硅探测器:其他工作温度 −30~+ 60 °C 太阳追踪方法 四象限探测器主动跟踪 跟踪精度 优于0.1° 天空漫射辐射
观测频率固定时刻与大气质量数 动态范围 增益可调 量化等级 15 表 4 ASC200性能参数
Table 4. ASC200 performance parameters
项目 内容 观测指标 可见光云量、红外云量、综合云量 红外波长 8~14 μm 视场角 可见光180°,红外160° 采样周期 10 min 工作温度 −45~55 °C 表 5 HIM性能参数
Table 5. HIM performance parameters
项目 内容 观测内容 总天空辐照度,天空漫射辐照度,漫射/总漫射比 波长 400~2400 nm 半高宽 4 nm @ 400~950 nm,15 nm @ 950~1700 nm,
20 nm @ 1700~2400 nm采样期 6 min 工作温度 −30~60 °C 信噪比 ≥600@ 400~1000 nm,≥300@ 1000~1700 nm,
≥200@ 1700~2400 nm(M = 2,非吸收通道)表 6 观测数据的质量控制阈值
Table 6. Quality control threshold of observation data
项目 数值 云量 0 光学厚度 <0.2 ALL与ALR相对偏差的标准差 <1% 相对偏差计算点与大小电站的投影距离 >5 km 太阳与大小电站的投影距离 >2.5 km ALL与ALR观测时间差异 <1 min 表 7 卫星观测到的集热塔反射光的辐射能量相对分布情况
Table 7. The relative distribution of the radiant energy of the light reflected by the heat collection tower observed by the satellite
距离/km 0° 10° 20° 30° 40° 50° 0 1.000 0.780 0.549 0.381 0.277 0.202 1 0.434 0.369 0.285 0.194 0.179 0.162 2 0.035 0.033 0.033 0.032 0.037 0.047 3 0.020 0.019 0.020 0.021 0.023 0.027 4 0.016 0.016 0.016 0.017 0.020 0.023 5 0.015 0.015 0.015 0.016 0.018 0.021 表 8 各级筛选后有效观测数据量值统计(组)
Table 8. Statistics of effective observation data after being selected at different levels (group)
筛选项目 有效观测数据值 合计 1020 nm 1640 nm 870 nm 675 nm 440 nm 500 nm (a) 804 778 611 466 787 565 4011 (b) 135 132 81 54 135 70 607 (c) 45 77 47 44 43 44 300 (d) 0 3 1 6 27 22 59 (e) 0 2 1 2 22 16 43 (f) 0 2 0 1 14 9 26 (g) 0 2 0 1 14 9 26 (h) 0 2 0 1 14 9 26 表 9 吸热器散射辐射带来的相对偏差(440 nm)
Table 9. Relative deviation due to scattered radiation from the heat absorber (440 nm)
UTC Time AOD Sz/(°) Sa/(°) Beta/(°) HB/km on DegB/(°) DdegB/(°) RdevB/% RdevBr/% HS/km on DegS/(°) DdegS/(°) RdevS/% RdevSr/% 03−10 08:59 0.15 61.83 235.34 0.07 2.06 1 85.37 4.63 −1.18 −1.08 1.54 0 124.87 4.87 −0.29 −0.31 03−10 07:59 0.14 53.28 220.75 0.11 2.86 1 70.77 0.77 −1.14 −0.92 2.14 0 110.27 9.73 −1.57 −1.49 03−10 06:59 0.15 47.20 202.90 0.13 3.55 1 52.92 2.92 −0.04 0.31 2.65 0 92.42 2.42 −1.37 −1.18 03−09 10:27 0.17 77.14 252.07 0.09 0.88 1 102.09 2.09 −0.70 −0.72 0.66 0 141.59 1.59 0.24 0.14 03−09 09:59 0.15 72.12 247.04 0.12 1.24 1 97.06 2.94 −2.11 −2.07 0.93 0 136.56 3.44 −0.63 −0.74 03−02 09:02 0.15 64.41 233.46 0.06 1.84 1 83.48 3.48 −0.51 −0.42 1.38 1 122.98 2.98 −1.23 −1.24 03−02 07:02 0.18 50.22 202.09 0.13 3.19 1 52.12 2.12 −0.20 0.19 2.39 0 91.62 1.62 −1.47 −1.28 02−27 10:14 0.14 77.10 246.64 0.09 0.88 1 96.66 3.34 −0.89 −0.87 0.66 0 136.16 3.84 −0.75 −0.84 02−27 09:02 0.16 65.23 232.61 0.16 1.77 1 82.63 2.63 −1.47 −1.23 1.33 0 122.13 2.13 0.47 0.39 02−27 08:02 0.19 57.00 218.41 0.09 2.49 1 68.43 1.57 0.09 0.30 1.86 0 107.93 7.93 1.33 1.38 02−27 07:02 0.18 51.24 201.49 0.08 3.08 1 51.51 1.51 −0.51 −0.29 2.30 0 91.02 1.02 −0.61 −0.50 01−25 09:24 0.16 76.61 230.44 0.11 0.92 1 80.46 0.46 −0.18 0.00 0.69 0 119.97 0.03 −0.81 −0.91 01−25 09:03 0.17 73.56 226.29 0.06 1.13 1 76.32 3.68 −0.14 −0.03 0.85 0 115.82 4.18 −0.60 −0.64 01−10 07:56 0.19 68.63 211.65 0.04 1.50 0 61.67 1.67 −1.02 −0.89 1.12 1 101.17 1.17 −0.44 −0.43 表 10 吸热器散射辐射带来的相对偏差(500 nm)
Table 10. Relative deviation due to scattered radiation from the heat absorber (500 nm)
UTC Time AOD Sz/(°) Sa/(°) Beta/(°) HB/km on DegB/(°) DdegB/(°) RdevB/% RdevBr/% HS/km on DegS/(°) DdegS/(°) RdevS/% RdevSr/% 03−10 09:00 0.14 62.01 235.59 0.12 2.04 1 85.61 4.39 −0.85 −0.63 1.53 0 125.11 5.11 0.88 0.87 03−10 08:00 0.14 53.42 221.04 0.25 2.85 1 71.06 1.06 −0.74 −0.14 2.13 0 110.56 9.44 −1.19 −0.97 03−03 08:03 0.15 55.92 219.77 0.14 2.60 1 69.80 0.20 −4.01 −3.65 1.94 0 109.30 9.30 −1.21 −1.10 02−27 10:16 0.14 77.30 246.84 0.08 0.87 1 96.86 3.14 0.29 0.32 0.65 0 136.36 3.64 −0.10 −0.18 02−27 07:03 0.16 51.32 201.84 0.14 3.07 1 51.86 1.86 −2.24 −1.81 2.29 0 91.36 1.36 −0.46 −0.22 01−25 09:25 0.15 76.80 230.69 0.17 0.90 1 80.71 0.71 0.57 0.88 0.68 0 120.21 0.21 −0.09 −0.21 01−25 09:04 0.16 73.72 226.51 0.11 1.12 1 76.54 3.46 0.68 0.93 0.84 0 116.04 3.96 −0.20 −0.25 01−10 08:58 0.17 75.87 224.52 0.08 0.97 0 74.54 4.54 0.49 0.71 0.72 1 114.04 5.96 0.31 0.28 01−10 07:57 0.17 68.75 211.92 0.07 1.49 0 61.94 1.94 −0.50 −0.25 1.12 1 101.44 1.44 −0.02 0.01 表 11 大电站散射辐射带来的天空漫射辐射相对变化随距离与观测角度变化(%)
Table 11. The relative change of the sky diffuse radiation caused by the scattered radiation from the large power station changes with distance and the observation angle (%)
距离/km 天空漫射辐射相对变化(%) 0° 10° 20° 30° 40° 50° 0 34.44 26.87 18.91 13.12 9.54 6.96 1 14.95 12.71 9.82 6.68 6.17 5.58 2 1.21 1.14 1.14 1.10 1.27 1.62 3 0.69 0.65 0.69 0.72 0.79 0.93 4 0.55 0.55 0.55 0.59 0.69 0.79 5 0.52 0.52 0.52 0.55 0.62 0.72 -
[1] 张勇, 祁广利, 戎志国. 卫星红外遥感器辐射定标模型与方法[M]. 北京: 科学出版社, 2015.ZHANG Y, QI G L, RONG ZH G. Models and Methodologies of Radiometric Calibrations for Satellite Infrared Remote Sensors[M]. Beijing: Science Press, 2015. (in Chinese) [2] 卢乃锰, 谷松岩. 气象卫星发展回顾与展望[J]. 遥感学报,2016,20(5):832-841.LU N M, GU S Y. Review and prospect on the development of meteorological satellites[J]. Journal of Remote Sensing, 2016, 20(5): 832-841. (in Chinese) [3] ZAHNG Y, LI ZH L, LI J. Comparisons of emissivity observations from satellites and the ground at the CRCS Dunhuang Gobi site[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(22): 13026-13041. doi: 10.1002/2014JD022216 [4] HU X Q, LIU J J, SUN L, et al. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors[J]. Canadian Journal of Remote Sensing, 2010, 36(5): 566-582. doi: 10.5589/m10-087 [5] 张勇, 李元, 戎志国, 等. 中国遥感卫星辐射校正场陆表热红外发射率光谱野外测量[J]. 光谱学与光谱分析,2009,29(5):1213-1217. doi: 10.3964/j.issn.1000-0593(2009)05-1213-05ZHANG Y, LI Y, RONG ZH G, et al. Field measurement of gobi surface emissivity spectrum at Dunhuang calibration site of China[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1213-1217. (in Chinese) doi: 10.3964/j.issn.1000-0593(2009)05-1213-05 [6] 张勇, 戎志国, 闵敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展,2016,31(2):171-179. doi: 10.11867/j.issn.1001-8166.2016.02.0171ZHANG Y, RONG ZH G, MIN M. Accuracy evaluations of the CRCS In-orbit field radiometric calibration methods for thermal infrared channels[J]. Advances in Earth Science, 2016, 31(2): 171-179. (in Chinese) doi: 10.11867/j.issn.1001-8166.2016.02.0171 [7] ZHANG Y X, ZHANG G SH, LIU ZH Q, et al. Spectral reflectance measurements at the China radiometric calibration test site for the remote sensing satellite sensor[J]. Acta Meteorologica Sinica, 2001, 15(3): 377-382. [8] 李元, 戎志国, 郑照军, 等. FY-3A扫描辐射计的可见近红外通道在轨场地定标[J]. 光学 精密工程,2009,17(12):2966-2974.LI Y, RONG ZH G, ZHENG ZH J, et al. Post launch site calibration of visible and near-infrared channels of FY-3A visible and infrared radiometers[J]. Optics and Precision Engineering, 2009, 17(12): 2966-2974. (in Chinese) [9] 李元, 张勇, 刘京晶, 等. 风云二号静止气象卫星可见光通道辐射校正场定标方法研究[J]. 光学学报,2009,29(1):41-46. doi: 10.3788/AOS20092901.0041LI Y, ZHANG Y, LIU J J, et al. Calibration of the visible and near-infrared channels of the FY-2C/FY-2D GEO meteorological satellite at radiometric site[J]. Acta Optica Sinica, 2009, 29(1): 41-46. (in Chinese) doi: 10.3788/AOS20092901.0041 [10] 孙凌, 郭茂华, 徐娜, 等. 基于敦煌场地定标的FY-3 MERSI反射太阳波段在轨响应变化分析[J]. 光谱学与光谱分析,2012,32(7):1869-1877. doi: 10.3964/j.issn.1000-0593(2012)07-1869-09SUN L, GUO M H, XU N, et al. On-orbit response variation analysis of FY-3 MERSI reflective solar bands based on Dunhuang site calibration[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1869-1877. (in Chinese) doi: 10.3964/j.issn.1000-0593(2012)07-1869-09 [11] HAN Q J, ZHANG X W, LIU L, et al. Lifetime radiometric calibration of HJ-1A/B CCD sensor using Dunhuang Gobi site[J]. Proceedings of SPIE, 2014, 9299: 92990B. [12] ZHANG X W, HAN Q J, LIU L. Using the Dunhuang test site to monitor the radiometric stability of the ZY-3 multispectral sensor[J]. Proceedings of SPIE, 2014, 9298: 92980H. [13] CHEN ZH CH, ZHANG B, ZHANG H, et al. Vicarious calibration of Beijing-1 multispectral imagers[J]. Remote Sensing, 2014, 6(2): 1432-1450. doi: 10.3390/rs6021432 [14] LI Y, RONG ZH G, LI Y Q, et al. Solar reflection band site automatic calibration by the Dunhuang site automatic observation radiometric calibration operational system[J]. Proceedings of SPIE, 2019, 11127: 111271M. [15] LI Y, RONG Z G, LI Y Q, et al.. Introduction of Dunhuang site automatic observation radiometric calibration operational system (DARCOS)[C]. Proceedings of CEOS-WGCV-IVOS Meeting 31, 2019. [16] 吕佳彦, 何明元, 陈林, 等. 基于敦煌辐射校正场的自动化辐射定标方法[J]. 光学学报,2017,37(8):0801003. doi: 10.3788/AOS201737.0801003LÜ J Y, HE M Y, CHEN L, et al. Automated radiation calibration method based on Dunhuang radiometric calibration site[J]. Acta Optica Sinica, 2017, 37(8): 0801003. (in Chinese) doi: 10.3788/AOS201737.0801003 [17] 邱刚刚, 李新, 韦玮, 等. 基于场地自动化观测技术的遥感器在轨辐射定标试验与分析[J]. 光学学报,2016,36(7):0701001. doi: 10.3788/AOS201636.0701001QIU G G, LI X, WEI W, et al. Experiment and analysis of on-orbit radiometric calibration for remote sensors based on in-site automated observation technology[J]. Acta Optica Sinica, 2016, 36(7): 0701001. (in Chinese) doi: 10.3788/AOS201636.0701001 [18] ZHANG Y, LI X, RONG ZH G, et al. China radiometric calibration sites ground-based automatic observing systems for CAL/VA[J]. Proceedings of SPIE, 2015, 9639: 96391E. doi: 10.1117/12.2194633 [19] 敦煌市委宣传部. 敦煌首航节能10兆瓦塔式熔盐光热发电项目有序推进[EB/OL]. (2015-05-04). http://www.cspplaza.com/article-5110-1.html.The Publicity Department of Dunhuang municipal Party committee. The energy-saving 10 MW tower molten salt solar thermal power generation project of Dunhuang Capital Airlines was promoted in an orderly manner[EB/OL]. (2015-05-04). http://www. cspplaza.com/article-5110-1.html. [20] 环球网. 敦煌100 MW塔式熔盐光热电站土建完成进入安装环节[EB/OL]. (2018-05-18). https://baijiahao.baidu.com/s?id=1600755797116589317&wfr=spider&for=pc.Global network. The civil engineering of Dunhuang 100MW tower molten salt optical thermal power station has been completed and entered the installation link[EB/OL]. (2018-05-18). https://baijiahao.baidu. com/s?id=1600755797116589317&wfr=spider&for=pc. [21] 胡丽琴. 风云四号卫星闪电辐射观测的辐射传输模拟研究[C]. 2011年第二十八届中国气象学会年会论文集, 中国气象学会, 2011: 1-10.HU L Q. Radiative transfer simulation of the Fengyun-4 lightning radiation observation[C]. Proceedings of the 28th Annual Meeting of the Chinese Meteorological Society, Chinese Meteorological Society, 2011: 1-10. (in Chinese) [22] YAO W X, LI ZH R, ZHAO Q, et al. A new anisotropic diffuse radiation model[J]. Energy Conversion and Management, 2015, 95: 304-313. doi: 10.1016/j.enconman.2015.01.016 [23] Cimel. Multiband photometer CE318-T User’s Manual (rev. January 2018) [EB/OL]. (2021-8-16). https://aeronet.gsfc.nasa.gov/new_web/Documents/CE318_T_Photometer_UserManual_V4.3.pdf. [24] FA T, XIE W Y, WANG Y R, et al. Development of an all-sky imaging system for cloud cover assessment[J]. Applied Optics, 2019, 58(20): 5516-5524. doi: 10.1364/AO.58.005516 [25] ESTELLES V, CAMPANELLI M, UTRILLAS M P, et al. Comparison of AERONET and SKYRAD4.2 inversion products retrieved from a Cimel CE318 sunphotometer[J]. Atmospheric Measurement Techniques, 2012, 5(3): 569-579. doi: 10.5194/amt-5-569-2012 [26] BARRETO Á, CUEVAS E, GRANADOS-MUÑOZ M J, et al. The new sun-sky-lunar Cimel CE318-T multiband photometer – A comprehensive performance evaluation[J]. Atmospheric Measurement Techniques, 2016, 9(2): 631-654. doi: 10.5194/amt-9-631-2016