留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快激光选区焊接技术研究进展

张国栋 程光华 张伟

张国栋, 程光华, 张伟. 超快激光选区焊接技术研究进展[J]. 中国光学, 2020, 13(6): 1209-1223. doi: 10.37188/CO.2020-0131
引用本文: 张国栋, 程光华, 张伟. 超快激光选区焊接技术研究进展[J]. 中国光学, 2020, 13(6): 1209-1223. doi: 10.37188/CO.2020-0131
ZHANG Guo-dong, CHENG Guang-hua, ZHANG Wei. Progress in ultrafast laser space-selective welding[J]. Chinese Optics, 2020, 13(6): 1209-1223. doi: 10.37188/CO.2020-0131
Citation: ZHANG Guo-dong, CHENG Guang-hua, ZHANG Wei. Progress in ultrafast laser space-selective welding[J]. Chinese Optics, 2020, 13(6): 1209-1223. doi: 10.37188/CO.2020-0131

超快激光选区焊接技术研究进展

doi: 10.37188/CO.2020-0131
基金项目: 国家重点研发计划项目(No. 2018YFB1107401)
详细信息
    作者简介:

    张国栋(1989—),男,陕西西安人,副教授,2019年于中国科学院大学获得博士学位,主要从事超快光学、超快激光微纳加工方面的研究。E-mail:guodongzhang@nwpu.edu.cn

    程光华(1976—),男,陕西安康人,教授,博士生导师,法国CNRS休伯特居里实验室客座教授,2004于中国科学院西安光学精密机械研究所获得博士学位,主要从事超短脉冲激光技术,超快激光与物质相互作用、飞秒激光微纳加工技术等方面的科学研究。E-mail:guanghuacheng@nwpu.edu.cn

    张伟:张 伟(1982—),男,河北廊坊人,中国航空制造技术研究院高级工程师,2012年于北京科技大学新金属材料国家重点实验室获得博士学位,主要从事先进激光加工技术在航空发动机制造以及航空航天先进材料精密加工中的技术研究。E-mail:wzhang06@163.com

  • 中图分类号: TN249

Progress in ultrafast laser space-selective welding

Funds: National Key Research and Development Project (No. 2018YFB1107401)
More Information
  • 摘要: 超快激光技术的发展为基础研究和工业生产不断注入新的动力,促发了很多新学科、新技术的诞生。超快激光焊接作为近年来发展起来的一种新型材料连接技术,在航空航天、精密机械、集成光电、生物医疗等领域具有巨大的应用潜力,受到了人们的广泛关注。基于超快激光非线性选区能量沉积的基本特点,超快激光焊接具有广泛的材料适用性和空间选择性,可以在无嵌入层的前提下实现涉及透明材料的高质量选区焊接。本文从超快激光选区焊接的物理机制、主要影响因素、适用领域入手进行了归纳与分析,并对未来该技术发展和将面临的关键挑战进行了论述。
  • 图  1  (a)超快激光选区焊接玻璃样品示意图[13];(b)高重频激光诱导材料内部改性示意图以及超快激光焊线横截面[14];(c)环形激光焊线封装的窗口玻璃[13]

    Figure  1.  (a) Diagram of ultrafast laser welding of glass[13]; (b) schematic diagram of internal modification induced by ultrafast laser with high pulse repetition rate and cross section of seal[14]; (c) image of two laser welded circular blanks of fused silica[13]

    图  2  光学接触条件下D263玻璃与单晶硅焊接截面的元素分析[16]

    Figure  2.  Element analysis of the cross-section of welded Si/D263 with post-optical contact [16]

    图  3  (a)非光学接触条件下不同焦点位置对应的样品焊接截面;(b)非光学接触条件下不同激光聚焦位置对应的焊接示意图[17]

    Figure  3.  (a) Welding cross-sections of the non-optical-contact sample with laser focusing at different positions; (b) illustration of the evolution of the laser-matter interation near sample interface with varying focus positions[17]

    图  4  (a)分离后以及(b)分离前的非交融式焊接样品截面[18]

    Figure  4.  Cross sections of the non-fusion welding sample before (a) and after (b) separation[18]

    图  5  (a)脉冲时延对激光脉冲瞬态吸收的影响;(b)焊接强度与脉冲时延的关系[26]

    Figure  5.  (a) Influence of delay times on transient absorption of laser pulse; (b) dependence of bonding strength on delay time between adjacent laser pulses[26]

    图  6  超快激光选区焊接透明陶瓷[12]

    Figure  6.  Ultrafast laser welding of transparent ceramics[12]

    图  7  (a)激光能量为1.63 μJ、扫描速度为20 mm/s时激光诱导D263玻璃热熔区域的横截面;(b)扫描速度为20 mm/s时超快激光作用D263玻璃的无裂纹条件[45]

    Figure  7.  (a) Cross-sections of D263 glass melting area at scanning speed v = 20 mm/s and laser energy Φ0 = 1.63 μJ; (b) crack-free and cracking conditions at v = 20 mm/s when ultra-fast laser is applied in D263[45]

    图  8  激光重复频率及脉冲能量对透明玻璃材料能量吸收效率的影响[22]

    Figure  8.  Influence of laser repetition rate and pulse energy on the absorptivity of the transparent glass[22]

    图  9  激光诱导微纳孔隙及裂纹结构的(a)透射光学显微图及(b)扫描电子显微图[49]

    Figure  9.  (a) Transmission microscope images and (b) scanning electron microscope image of the laser induced bubble explosion and nanocracks[49]

    图  10  (a)飞秒脉冲激光聚焦于样品表面下方不同位置时,激光作用区域的微观侧视图,(b)激光诱导材料表面凸起,(c)激光诱导热熔材料喷溅[13]

    Figure  10.  (a) Side view of the laser-modified region corresponding to the femtosecond laser focused on different positions of sample surface, (b) laser-induced surface bulging, (c) laser-induced splattering[13]

    图  11  扫描电子显微镜以及XPS分析下激光诱导融石英玻璃与铝的有效结合层[28]

    Figure  11.  Scanning electron microscope images and XPS analysis for laser-induced materials-combination layer between fused silica and aluminium[28]

    图  12  (a)超快激光选区封装微流器件[64-65],(b)超快激光选区封装血压传感器[66],(c)激光选区焊接光子晶体光纤端帽[67]

    Figure  12.  (a) Microfluidic device by using ultrafast laser space-selective[64-65], (b) packaging blood pressure sensor[66], (c) photonic crystal fiber endcap by using ultrafast laser space-selective[67]

  • [1] WANG S F, ZHANG J, LUO D W, et al. Transparent ceramics: processing, materials and applications[J]. Progress in Solid State Chemistry, 2013, 41(1-2): 20-54. doi: 10.1016/j.progsolidstchem.2012.12.002
    [2] 范志刚, 刘建军, 肖昊苏, 等. 蓝宝石单晶的生长技术及应用研究进展[J]. 硅酸盐学报,2011,39(5):880-891.

    FAN ZH G, LIU J J, XIAO H S, et al. Research progress on growth technique and application of sapphire single crystal[J]. Journal of the Chinese Ceramic Society, 2011, 39(5): 880-891. (in Chinese)
    [3] AXINTE E. Glasses as engineering materials: a review[J]. Materials &Design, 2011, 32(4): 1717-1732.
    [4] TAMAKI T, WATANABE W, NISHII J, et al. Welding of transparent materials using femtosecond laser pulses[J]. Japanese Journal of Applied Physics, 2005, 44(22-23): L687-L689.
    [5] WATANABE W, ONDA S, TAMAKI T, et al. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses[J]. Applied Physics Letters, 2006, 89(2): 021106. doi: 10.1063/1.2221393
    [6] HÉLIE D, LACROIX F, VALLÉE R. Bonding of optical materials by femtosecond laser welding for aerospace and high power laser applications[J]. Proceedings of SPIE, 2012, 8412: 841210. doi: 10.1117/12.2010265
    [7] LUO CH, LIN L W. The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask[J]. Sensors and Actuators A:Physical, 2002, 97-98: 398-404. doi: 10.1016/S0924-4247(01)00849-4
    [8] GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225. doi: 10.1038/nphoton.2008.47
    [9] SUGIOKA K, CHENG Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light:Science &Applications, 2014, 3(4): e149.
    [10] TAMAKI T, WATANABE W, ITOH K. Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm[J]. Optics Express, 2006, 14(22): 10460-10468. doi: 10.1364/OE.14.010460
    [11] OZEKI Y, INOUE T, TAMAKI T, et al. Direct welding between copper and glass substrates with femtosecond laser pulses[J]. Applied Physics Express, 2008, 1(8): 082601.
    [12] PENILLA E H, DEVIA-CRUZ L F, WIEG A T, et al. Ultrafast laser welding of ceramics[J]. Science, 2019, 365(6455): 803-808. doi: 10.1126/science.aaw6699
    [13] RICHTER S, ZIMMERMANN F, TÜNNERMANN A, et al. [INVITED] Laser welding of glasses at high repetition rates - Fundamentals and prospects[J]. Optics &Laser Technology, 2016, 83: 59-66.
    [14] MIYAMOTO I, CVECEK K, OKAMOTO Y, et al. Internal modification of glass by ultrashort laser pulse and its application to microwelding[J]. Applied Physics A, 2014, 114(1): 187-208. doi: 10.1007/s00339-013-8115-3
    [15] ZHANG G D, CHENG G H. Direct welding of glass and metal by 1 kHz femtosecond laser pulses[J]. Applied Optics, 2015, 54(30): 8957-8961. doi: 10.1364/AO.54.008957
    [16] MIYAMOTO I, OKAMOTO Y, HANSEN A, et al. High speed, high strength microwelding of Si/glass using ps-laser pulses[J]. Optics Express, 2015, 23(3): 3427-3439. doi: 10.1364/OE.23.003427
    [17] CHEN J Y, CARTER R M, THOMSON R R, et al. Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding: erratum[J]. Optics Express, 2015, 23(21): 28104-28105. doi: 10.1364/OE.23.028104
    [18] CVECEK K, ODATO R, DEHMEL S, et al. Gap bridging in joining of glass using ultra short laser pulses[J]. Optics Express, 2015, 23(5): 5681-5693. doi: 10.1364/OE.23.005681
    [19] LACROIX F, HÉLIE D, VALLÉE R. Optical bonding reinforced by femtosecond laser welding[J]. Proceedings of SPIE, 2011, 8126: 812612. doi: 10.1117/12.892465
    [20] ZOLOTOVSKAYA S A, TANG G, WANG Z B, et al. Surface plasmon resonance assisted rapid laser joining of glass[J]. Applied Physics Letters, 2014, 105(8): 083109. doi: 10.1063/1.4894118
    [21] MIYAMOTO I, HORN A, GOTTMANN J, et al. Fusion welding of glass using femtosecond laser pulses with high-repetition rates[J]. Journal of Laser Micro/Nanoengineering, 2007, 2(1): 57-63. doi: 10.2961/jlmn.2007.01.0011
    [22] MIYAMOTO I, CVECEK K, SCHMIDT M. Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses[J]. Optics Express, 2011, 19(11): 10714-10727. doi: 10.1364/OE.19.010714
    [23] RICHTER S, DÖRING S, TÜNNERMANN A, et al. Bonding of glass with femtosecond laser pulses at high repetition rates[J]. Applied Physics A, 2011, 103(2): 257-261. doi: 10.1007/s00339-011-6369-1
    [24] ZIMMERMANN F, RICHTER S, DÖRING S, et al. Ultrastable bonding of glass with femtosecond laser bursts[J]. Applied Optics, 2013, 52(6): 1149-1154. doi: 10.1364/AO.52.001149
    [25] SUGIOKA K, IIDA M, TAKAI H, et al. Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train[J]. Optics Letters, 2011, 36(14): 2734-2736. doi: 10.1364/OL.36.002734
    [26] WU S ZH, WU D, XU J, et al. Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation[J]. Optics Express, 2012, 20(27): 28893-28905. doi: 10.1364/OE.20.028893
    [27] WU S ZH, WU D, XU J, et al. Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding[J]. Optics Express, 2013, 21(20): 24049-24059. doi: 10.1364/OE.21.024049
    [28] CARTER R M, CHEN J Y, SHEPHARD J D, et al. Picosecond laser welding of similar and dissimilar materials[J]. Applied Optics, 2014, 53(19): 4233-4238. doi: 10.1364/AO.53.004233
    [29] ZHANG G D, BAI J, ZHAO W, et al. Interface modification based ultrashort laser microwelding between SiC and fused silica[J]. Optics Express, 2017, 25(3): 1702-1709. doi: 10.1364/OE.25.001702
    [30] VOLPE A, DINISO F, GAUDIUSO C, et al. Welding of PMMA by a femtosecond fiber laser[J]. Optics Express, 2015, 23(4): 4114-4124. doi: 10.1364/OE.23.004114
    [31] MIZUGUCHI Y, TAMAKI T, FUKUDA T, et al. Dendrite-joining of air-gap-separated PMMA substrates using ultrashort laser pulses[J]. Optical Materials Express, 2017, 7(7): 2141-2149. doi: 10.1364/OME.7.002141
    [32] ROTH G L, RUNG S, HELLMANN R. Ultrashort pulse laser micro-welding of cyclo-olefin copolymers[J]. Optics and Lasers in Engineering, 2017, 93: 178-181. doi: 10.1016/j.optlaseng.2017.02.006
    [33] WATANABE W. Volume gratings and welding of glass/plastic by femtosecond laser direct writing[J]. Proceedings of SPIE, 2018, 10456: 104562L.
    [34] RICHTER S, ZIMMERMANN F, EBERHARDT R, et al. Toward laser welding of glasses without optical contacting[J]. Applied Physics A, 2015, 121(1): 1-9.
    [35] HAM S S, KIM C H, CHOI S H, et al. Jig-free laser welding of Eagle XG glasses by using a picosecond pulsed laser[J]. Journal of Mechanical Science and Technology, 2019, 33(6): 2825-2832. doi: 10.1007/s12206-019-0529-1
    [36] CHEN H, DENG L M, DUAN J, et al. Picosecond laser welding of glasses with a large gap by a rapid oscillating scan[J]. Optics Letters, 2019, 44(10): 2570-2573. doi: 10.1364/OL.44.002570
    [37] HÉLIE D, BÉGIN M, LACROIX F, et al. Reinforced direct bonding of optical materials by femtosecond laser welding[J]. Applied Optics, 2012, 51(12): 2098-2106. doi: 10.1364/AO.51.002098
    [38] HÉLIE D, LACROIX F, VALLÉE R. Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding[J]. Journal of Laser Micro/Nanoengineering, 2012, 7(3): 284-292. doi: 10.2961/jlmn.2012.03.0010
    [39] ZHANG G D, STOIAN R, ZHAO W, et al. Femtosecond laser Bessel beam welding of transparent to non-transparent materials with large focal-position tolerant zone[J]. Optics Express, 2018, 26(2): 917-926. doi: 10.1364/OE.26.000917
    [40] SUNDARAM S K, MAZUR E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 2002, 1(4): 217-224. doi: 10.1038/nmat767
    [41] RETHFELD B, SOKOLOWSKI-TINTEN K, VON DER LINDE D, et al. Timescales in the response of materials to femtosecond laser excitation[J]. Applied Physics A, 2004, 79(4-6): 767-769. doi: 10.1007/s00339-004-2805-9
    [42] STOIAN R, BHUYAN M K, RUDENKO A, et al. High-resolution material structuring using ultrafast laser non-diffractive beams[J]. Advances in Physics:X, 2019, 4(1): 1659180. doi: 10.1080/23746149.2019.1659180
    [43] BHUYAN M K, SOMAYAJI M, MERMILLOD-BLONDIN A, et al. Ultrafast laser nanostructuring in bulk silica, a "slow" microexplosion[J]. Optica, 2017, 4(8): 951-958. doi: 10.1364/OPTICA.4.000951
    [44] MIYAMOTO I, CVECEK K, SCHMIDT M. Crack-free conditions in welding of glass by ultrashort laser pulse[J]. Optics Express, 2013, 21(12): 14291-14302. doi: 10.1364/OE.21.014291
    [45] MIYAMOTO I, CVECEK K, OKAMOTO Y, et al. Novel fusion welding technology of glass using ultrashort pulse lasers[J]. Physics Procedia, 2010, 5: 483-493.
    [46] SAVASTRU D, SAVASTRU R, MICLOS S, et al. Simulation of laser induced absorption phenomena in transparent materials[J]. Optics and Lasers in Engineering, 2018, 110: 288-295. doi: 10.1016/j.optlaseng.2018.04.025
    [47] WANG R, ZHANG Q B, LI D, et al. Identification of tunneling and multiphoton ionization in intermediate Keldysh parameter regime[J]. Optics Express, 2019, 27(5): 6471-6482. doi: 10.1364/OE.27.006471
    [48] OUYANG ZH Y, OKAMOTO Y, OGINO Y, et al. Influence of numerical aperture on molten area formation in fusion micro-welding of glass by picosecond pulsed laser[J]. Applied Sciences, 2019, 9(7): 1412. doi: 10.3390/app9071412
    [49] KISSI E O, BELLOUARD Y. Self-organized nanostructures forming under high-repetition rate femtosecond laser bulk-heating of fused silica[J]. Optics Express, 2018, 26(11): 14024-14037. doi: 10.1364/OE.26.014024
    [50] CVECEK K, MIYAMOTO I, SCHMIDT M. Gas bubble formation in fused silica generated by ultra-short laser pulses[J]. Optics Express, 2014, 22(13): 15877-15893. doi: 10.1364/OE.22.015877
    [51] ZHANG G D, CHENG G H, BHUYAN M K, et al. Ultrashort Bessel beam photoinscription of Bragg grating waveguides and their application as temperature sensors[J]. Photonics Research, 2019, 7(7): 806-814. doi: 10.1364/PRJ.7.000806
    [52] ZHANG G, CHENG G, BHUYAN M, et al. Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams[J]. Optics Letters, 2018, 43(9): 2161-2164. doi: 10.1364/OL.43.002161
    [53] STOIAN R, BHUYAN M K, ZHANG G D, et al. Ultrafast Bessel beams: advanced tools for laser materials processing[J]. Advanced Optical Technologies, 2018, 7(3): 165-174. doi: 10.1515/aot-2018-0009
    [54] CVECEK K, DEHMEL S, MIYAMOTO I, et al. A review on glass welding by ultra-short laser pulses[J]. International Journal of Extreme Manufacturing, 2019, 1(4): 042001. doi: 10.1088/2631-7990/ab55f6
    [55] VILLERIUS V, KOOIKER H, POST J, et al. Ultrashort pulsed laser ablation of stainless steels[J]. International Journal of Machine Tools and Manufacture, 2019, 138: 27-35. doi: 10.1016/j.ijmachtools.2018.11.003
    [56] LOU R, ZHANG G D, LI G Y, et al. Design and fabrication of dual-scale broadband antireflective structures on metal surfaces by using nanosecond and femtosecond lasers[J]. Micromachines, 2020, 11(1): 20.
    [57] RICHTER S, ZIMMERMANN F, DÖRING S, et al. Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy[J]. Applied Physics A, 2013, 110(1): 9-15. doi: 10.1007/s00339-012-7478-1
    [58] ROTH G L, RUNG S, HELLMANN R. Welding of transparent polymers using femtosecond laser[J]. Applied Physics A, 2016, 122(2): 86. doi: 10.1007/s00339-016-9605-x
    [59] BUTKUS S, GAIŽAUSKAS E, PAIPULAS D, et al. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses[J]. Applied Physics A, 2014, 114(1): 81-90. doi: 10.1007/s00339-013-8108-2
    [60] HORN A, MINGAREEV I, WERTH A, et al. Investigations on ultrafast welding of glass–glass and glass–silicon[J]. Applied Physics A, 2008, 93(1): 171.
    [61] ZHANG J J, XU S ZH, DONG Y K, et al. Microwelding of glass to silicon by green ultrafast laser pulses[J]. Optics &Laser Technology, 2019, 120: 105720.
    [62] QUINTINO L, LIU L, MIRANDA R M, et al. Bonding NiTi to glass with femtosecond laser pulses[J]. Materials Letters, 2013, 98: 142-145. doi: 10.1016/j.matlet.2013.02.051
    [63] UTSUMI A, OOIE T, YANO T, et al. Direct bonding of glass and metal using short pulsed laser[J]. Journal of Laser Micro/Nanoengineering, 2007, 2(2): 133-136. doi: 10.2961/jlmn.2007.02.0005
    [64] ROTH G L, ESEN C, HELLMANN R. A new approach to seal polymer microfluidic devices using ultrashort laser pulses[J]. Journal of Laser Micro/Nanoengineering, 2019, 14(1): 49-53.
    [65] KIM S, KIM J, JOUNG Y H, et al. Bonding strength of a glass microfluidic device fabricated by femtosecond laser micromachining and direct welding[J]. Micromachines, 2018, 9(12): 639. doi: 10.3390/mi9120639
    [66] KIM S, PARK J, SO S, et al. Characteristics of an implantable blood pressure sensor packaged by ultrafast laser microwelding[J]. Sensors, 2019, 19(8): 1801. doi: 10.3390/s19081801
    [67] HÉLIE D, GOUIN S, VALLÉE R. Assembling an endcap to optical fibers by femtosecond laser welding and milling[J]. Optical Materials Express, 2013, 3(10): 1742-1754. doi: 10.1364/OME.3.001742
  • 加载中
图(13)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  130
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2020-09-11
  • 网络出版日期:  2020-11-10
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回