留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polarization lidar gain ratio calibration method: a comparison

TONG Yi-cheng TONG Xue-dong ZHANG Kai XIAO Da RONG Yu-hang ZHOU Yu-di LIU Chong LIU Dong

童奕澄, 童学东, 张凯, 肖达, 戎宇航, 周雨迪, 刘崇, 刘东. 偏振激光雷达增益比定标方法对比研究[J]. 中国光学(中英文), 2021, 14(3): 685-703. doi: 10.37188/CO.2020-0136
引用本文: 童奕澄, 童学东, 张凯, 肖达, 戎宇航, 周雨迪, 刘崇, 刘东. 偏振激光雷达增益比定标方法对比研究[J]. 中国光学(中英文), 2021, 14(3): 685-703. doi: 10.37188/CO.2020-0136
TONG Yi-cheng, TONG Xue-dong, ZHANG Kai, XIAO Da, RONG Yu-hang, ZHOU Yu-di, LIU Chong, LIU Dong. Polarization lidar gain ratio calibration method: a comparison[J]. Chinese Optics, 2021, 14(3): 685-703. doi: 10.37188/CO.2020-0136
Citation: TONG Yi-cheng, TONG Xue-dong, ZHANG Kai, XIAO Da, RONG Yu-hang, ZHOU Yu-di, LIU Chong, LIU Dong. Polarization lidar gain ratio calibration method: a comparison[J]. Chinese Optics, 2021, 14(3): 685-703. doi: 10.37188/CO.2020-0136

偏振激光雷达增益比定标方法对比研究

详细信息
  • 中图分类号: TP958.98

Polarization lidar gain ratio calibration method: a comparison

doi: 10.37188/CO.2020-0136
Funds: Supported by National Key Research and Development Program of China (No. 2016YFC1400900); National Natural Science Foundation of China (No. 41775023); Excellent Young Scientist Program of Zhejiang Provincial Natural Science Foundation of China (No. LR19D050001)
More Information
    Author Bio:

    Tong Yicheng (1994—), male, born in Ningbo City, Zhejiang Province. He is a doctoral candidate. In 2018, he obtained his bachelor's degree from Changchun University of Science and Technology. He is mainly engaged in the research of atmospheric remote sensing lidar. E-mail: yichengtong@zju.edu.cn

    Liu Dong (1982—), male, born in Dalian City, Liaoning Province. He is a doctor, professor and doctoral supervisor. He obtained his bachelor's degree and doctor's degree from Zhejiang University in 2005 and 2010 respectively. He is mainly engaged in the research of photoelectric detection and lidar. E-mail: liudongopt@zju.edu.cn

    Corresponding author: liudongopt@zju.edu.cn
  • 摘要: 增益比定标误差是影响偏振激光雷达退偏比精度的主要因素之一,观测前必须进行准确的增益比定标。本文分析了现存多种增益比定标方法的基本原理,并通过实验对比了+45°法、±45°法、∆45°法、旋转拟合法与退偏器法等增益比定标方法的定标准确性与优缺点。实验结果表明:∆45°法、±45°法与旋转拟合法在对准偏失角较小的情况下定标相对准确,但±45°法与旋转拟合法操作较为繁琐。+45°法在无对准偏失角的情况下定标误差仍较大。退偏器法操作最简便,但会受到非理想退偏器的制约。通过理论分析与实验对比,本文给出了增益比定标方法的最佳选择,即在一般情况下采用∆45°法定标,在有高精度退偏器的情况下采用退偏器法定标。

     

  • 图 1  偏振激光雷达系统基本原理与结构图

    Figure 1.  Basic principle and structure diagram of polarization lidar system

    图 2  +45°法原理图。(a)半波片旋转之前;(b)半波片旋转+45°之后

    Figure 2.  Schematic diagram of +45° method. (a) Before HWP rotation. (b) After HWP rotation by +45°

    图 3  ±45°法原理图。(a)半波片旋转之前;(b)半波片旋转+22.5°之后;(c)半波片旋转−22.5°之后

    Figure 3.  Schematic diagram of ±45° method. (a) Before HWP rotation. (b) After HWP rotation by +22.5°. (c) After HWP rotation by −22.5°

    图 4  ∆45°法原理图。(a)半波片旋转之前;(b)半波片旋转45°之后

    Figure 4.  Schematic diagram of ∆45° method. (a) Before HWP rotation. (b) After HWP rotation by 45°

    图 6  CALIOP增益比定标原理图

    Figure 6.  Schematic diagram for CALIOP gain ratio calibration

    图 7  5种定标方法相对误差随对准偏失角的变化曲线

    Figure 7.  Relative errors changing with the misalignment angle for the five calibration methods

    图 8  实际测量退偏比随对准偏失角的变化曲线图。其中蓝色圆圈代表在不同$\theta $情况下测量的${\delta ^{\rm{*}}}\left( \theta \right)$,红色虚线代表拟合曲线,绿色虚线代表${\theta _{{\rm{init}}}}$

    Figure 8.  Curve of the actually measured depolarization ratio changing with the misalignment angle, where the blue circle represents the ${\delta ^{\rm{*}}}\left( \theta \right)$ values measured at different $\theta $ angles, and the red and green dotted lines represent the fitting curve and ${\theta _{{\rm{init}}}}$, respectively

    图 9  退偏器法增益比定标结果。蓝色圆圈代表半波片在不同角度下测量的增益比,红色虚线代表余弦函数多项式拟合曲线

    Figure 9.  Gain ratio calibration result of pseudo-depolarizer method. The blue circles represent the gain ratios measured at different misalignment angles, and the red dotted line represents the cosine polynomial fitting curve

    图 5  旋转拟合法原理图。(a)半波片旋转之前;(b)半波片旋转${\theta _{{\rm{h}},j}}$角之后

    Figure 5.  Schematic diagram of rotation fitting method. (a) Before HWP rotation. (b) After HWP rotation by ${\theta _{{\rm{h}},j}}$

    表  1  Main parameters for polarization lidar system

    Table  1.   Main parameters for polarization lidar system

    Main parametersValue
    Laser center wavelength532 nm
    Laser energy5 mJ
    Repetition frequency10 Hz
    Pulse width8 ns
    Diameter of telescope primary mirror210 mm
    Field of view of telescope1 mrad
    Focal length of telescope2000 mm
    Filter bandwidth3 nm
    下载: 导出CSV

    表  2  Calibration results of five methods at ${\theta _{\rm{h}}}{\rm{ = }}{0^\circ }$

    Table  2.   Calibration results of five methods at ${\theta _{\rm{h}}}{\rm{ = }}{0^\circ }$

    Calibration method
    +45°±45°△45°Rotation fittingPseudo-depolarizer
    Calibration result1.2185±0.13791.2679±0.15181.2676±0.15241.2716±0.02501.1977±0.1483
    下载: 导出CSV
  • [1] SCHOTLAND R M, SASSEN K, STONE R. Observations by lidar of linear depolarization ratios for hydrometeors[J]. Journal of Applied Meteorology, 1971, 10(5): 1011-1017. doi: 10.1175/1520-0450(1971)010<1011:OBLOLD>2.0.CO;2
    [2] SASSEN K. Polarization in lidar: a review[J]. Proceedings of SPIE, 2003, 5158: 151-160. doi: 10.1117/12.507006
    [3] LIU D, YANG Y Y, ZHANG Y P, et al. Pattern recognition model for aerosol classification with atmospheric backscatter lidars: principles and simulations[J]. Journal of Applied Remote Sensing, 2015, 9(1): 096006. doi: 10.1117/1.JRS.9.096006
    [4] CHENG ZH T, LIU D, LUO J, et al. Tolerance evaluation for anti-reflection coatings in field-widened michelson spectroscopic filter[J]. Chinese Journal of Lasers, 2015, 42(8): 0813002. (in Chinese) doi: 10.3788/CJL201542.0813002
    [5] QIU J W, XIA H Y, SHANGGUAN M J, et al. Micro-pulse polarization lidar at 1.5 μm using a single superconducting nanowire single-photon detector[J]. Optics Letters, 2017, 42(21): 4454-4457. doi: 10.1364/OL.42.004454
    [6] GOBBI G P, BARNABA F, GIORGI R, et al. Altitude-resolved properties of a Saharan dust event over the Mediterranean[J]. Atmospheric Environment, 2000, 34(29-30): 5119-5127. doi: 10.1016/S1352-2310(00)00194-1
    [7] DIONISI D, BARNABA F, COSTABILE F, et al. Retrieval of aerosol parameters from continuous h24 lidar-ceilometer measurements[J]. EPJ Web of Conferences, 2016, 119(4): 23004.
    [8] BINIETOGLOU I, AMODEO A, D’AMICO G, et al. Examination of possible synergy between lidar and ceilometer for the monitoring of atmospheric aerosols[J]. Proceedings of SPIE, 2011, 8182: 818209. doi: 10.1117/12.897530
    [9] CAIRO F, DI DONFRANCESCO G, ADRIANI A, et al. Comparison of various linear depolarization parameters measured by lidar[J]. Applied Optics, 1999, 38(21): 4425-4432. doi: 10.1364/AO.38.004425
    [10] LUO J, LIU D, XU P T, et al. High-precision polarizing beam splitting system based on polarizing beam splitter[J]. Chinese Journal of Lasers, 2016, 43(12): 1210001. (in Chinese) doi: 10.3788/CJL201643.1210001
    [11] BEHRENDT A, NAKAMURA T. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature[J]. Optics Express, 2002, 10(16): 805-817. doi: 10.1364/OE.10.000805
    [12] YOUNG A T. Rayleigh scattering[J]. Physics Today, 1982, 35(1): 42-48. doi: 10.1063/1.2890003
    [13] SHE C Y. Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars[J]. Applied Optics, 2001, 40(27): 4875-4884. doi: 10.1364/AO.40.004875
    [14] LUO J, LIU D, HUANG Z H, et al. Polarization properties of receiving telescopes in atmospheric remote sensing polarization lidars[J]. Applied Optics, 2017, 56(24): 6837-6845. doi: 10.1364/AO.56.006837
    [15] FREUDENTHALER V, ESSELBORN M, WIEGNER M, et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J]. Tellus B:Chemical and Physical Meteorology, 2009, 61(1): 165-179. doi: 10.1111/j.1600-0889.2008.00396.x
    [16] SASSEN K, BENSON S. A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: microphysical properties derived from lidar depolarization[J]. Journal of the Atmospheric Sciences, 2001, 58(15): 2103-2112.
    [17] LUO J, LIU D, BI L, et al. Rotating a half-wave plate by 45°: an ideal calibration method for the gain ratio in polarization lidars[J]. Optics Communications, 2018, 407: 361-366. doi: 10.1016/j.optcom.2017.09.065
    [18] ALVAREZ J M, VAUGHAN M A, HOSTETLER C A, et al. Calibration technique for polarization-sensitive lidars[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(5): 683-699. doi: 10.1175/JTECH1872.1
    [19] MATTIS I, TESCHE M, GREIN M, et al. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme[J]. Applied Optics, 2009, 48(14): 2742-2751. doi: 10.1364/AO.48.002742
    [20] HUNT W H, WINKER D M, VAUGHAN M A, et al. CALIPSO lidar description and performance assessment[J]. Journal of Atmospheric and Oceanic Technology, 2008, 26(7): 1214-1228.
    [21] QU Y. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Optics, 2013, 6(6): 834-840. (in Chinese)
    [22] YANG Z J, CHEN F, LI CH, et al. Transient effect of dead time of photon-counting in micro-pulse lidar[J]. Optics and Precision Engineering, 2015, 23(2): 408-414. (in Chinese) doi: 10.3788/OPE.20152302.0408
    [23] DUAN L L, LIU D, ZHANG Y P, et al. Lidar data gluing technology based on hybrid intelligent algorithm[J]. Acta Optica Sinica, 2017, 37(6): 0601002. (in Chinese) doi: 10.3788/AOS201737.0601002
    [24] LUO J, LIU D, WANG B Y, et al. Effects of a nonideal half-wave plate on the gain ratio calibration measurements in polarization lidars[J]. Applied Optics, 2017, 56(29): 8100-8108. doi: 10.1364/AO.56.008100
    [25] D'AMICO G, AMODEO A, MATTIS I, et al. EARLINET single calculus chain - technical - Part 1: pre-processing of raw lidar data[J]. Atmospheric Measurement Techniques, 2016, 9(2): 491-507. doi: 10.5194/amt-9-491-2016
    [26] LIU Q, LIU CH, ZHU X L, et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2020, 13(1): 148-155. (in Chinese) doi: 10.3788/co.20201301.0148
    [27] LU X Y, LI X B, QIN W B, et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar[J]. Optics and Precision Engineering, 2017, 25(7): 1697-1704. (in Chinese)
    [28] CHENG ZH T, LIU D, LUO J, et al. Influences analysis of the spectral filter transmission on the performance of high-spectral-resolution lidar[J]. Acta Optica Sinica, 2014, 34(8): 0801003. (in Chinese) doi: 10.3788/AOS201434.0801003
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2594
  • HTML全文浏览量:  552
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2020-09-11
  • 网络出版日期:  2020-12-24
  • 刊出日期:  2021-05-14

目录

    /

    返回文章
    返回