-
摘要: 要想实现弱光探测,需要探测器具有高灵敏度。石墨烯、过渡金属硫化物、黑磷等二维材料因具有宽光谱吸收、带隙可调、高载流子迁移率等良好的光学与电学性能,广泛应用于红外探测器的制作,然而这些材料存在弱光吸收、载流子迁移率低、空气稳定性差等问题,制约了其在高灵敏度红外探测领域的应用。同单一的二维材料相比,二维材料异质结不仅具有各单一材料的特点,而且由于两种材料的结合展现出新颖的物理特性,近年来在高灵敏度红外探测领域得到了广泛研究。本文基于影响灵敏度的主要因素,分析总结了提高红外探测器灵敏度的主要策略,回顾了近几年基于二维材料异质结高灵敏度红外探测器的发展,总结了其主要性能指标,最后指出了进一步提升红外探测灵敏度所面临的挑战,从如何平衡探测器响应度与响应速度、大面积二维异质结制备、异质结界面优化利用等方面展望了如何获得综合性能良好的高灵敏度红外探测器以及实现探测器商业应用,以期对高灵敏度红外探测领域的发展提供一定的指导意见。Abstract: To achieve weak signal detection, high sensitivity is required. Because of their strengths in optical and electrical properties such as wide spectral absorption, adjustable bandgap, and high carrier mobility, graphene, Transition Metal dichalcogenides (TMDs), Black Phosphorus (BP) and other two-dimensional (2D) materials have been used to fabricate infrared detectors. However, those 2D materials have disadvantages of weak light absorption, low carrier mobility and air instability, that restrict their applications in high-sensitivity infrared detection. Compared with single two-dimensional material, heterostructures consisting of two or more single 2D materials adopt the characteristics of each single material as well as some novel physical properties from heterojunctions/interfaces. In recent years, the heterostructure of 2D materials has been studied extensively in the field of high-sensitivity infrared detection. To gain a deep understanding of the factors affecting sensitivity, we provide a comprehensive review of the strategies that improve the sensitivity of infrared detectors and the development of high-sensitivity infrared detectors based on 2D heterojunctions in recent years. We summarize the figures of merit of these infrared detectors and identify the existing challenges impeding further improvements in sensitivity. Finally, by summarizing the challenges of future improving the sensitivity of infrared detection prospects for strategies to obtain high-sensitivity infrared detectors with good comprehensive performance and commercial applicability are presented with considerations for balancing the detector’s responsivity and response speed, large area two-dimensional heterojunction preparation, heterojunction interface optimization, and so forth.
-
Key words:
- infrared detection /
- high sensitivity /
- 2D materials /
- heterojunction
-
图 1 基于二维异质结的低暗电流近红外探测器。(a)上图:基于MoS2/石墨烯/WSe2异质结构光电探测器的光学图像[42],比例尺:5 µm;下图:异质结器件示意图[42];(b)光响应度R(左)和比探测率D*(右)在400到2400 nm范围内随波长的变化[42];(c)基于MoS2/Si异质结光电探测器的示意图[43];(d)808 nm激光照射下,光响应度R(左)和比探测率D*(右)随光功率的变化[43]
Figure 1. Near-infrared detector based on two-dimensional heterojunction with a low current. (a) Upper panel: optical image of the MoS2/graphene/WSe2 heterostructure photodetector[39], scale bar is 5 µm. Bottom panel: schematic diagram of a heterojunction device[42]. (b) Photoresponsivity R (left) and specific detectivity D*(right) vary with wavelength in the range of 400 to 2400 nm[42]. (c) Schematic diagram of a MoS2/Si heterojunction photodetector[43]. (d) Photoresponsivity R (left) and detectivity D* (right) vary with optical power under 808 nm laser irradiation[43]
表 1 二维异质结高灵敏红外探测器的主要性能指标
Table 1. Key performance parameters of high-sensitivity infrared detectors based on a two-dimensional heterojunction
探测器类型 材料 响应波长/nm 响应度/(A·W−1) 响应时间 比探测率/Jones 参考文献 低暗电流探测器 MoS2/石墨烯/WSe2 400~2400 可见光:104
2400 nm:0.153.6/30.3 µs 可见光:1015
2400 nm:10942 MoS2/Si 350~1100 − 3/40 µs 880 nm:1013 43 PtSe2/CdTe 200~2000 780 nm:0.506 8.1/43.6 µs 780 nm:4.2×1011 44 WS2/GaAs 200~1500 808 nm:0.527 21.8/49.6 µs 808 nm: 1.03×1014 45 BP/MoS2 可见光-中红外 − 3.7/4 µs 3.8 µm:1.2×1010 19 BP/InSe 可见光-中红外 − − − 20 MoS2/CdTe 200~1700 780 nm: 0.0366 43.7/82.1µs 780 nm:6.1×1010 48 PtSe2/Si纳米线 200~1550 780 nm:12.65 10.1/19.5 µs 780 nm:1013 49 石墨烯/碳纳米带 300~1100 980 nm:0.209 68/78 µs 980 nm:4.87×1010 50 还原氧化石墨烯/MoS2/Si 350~4300 808 nm:21.8 2.8/46.6 µs 808 nm:3.8×1015 51 WS2/Si 200~3043 980 nm:8.3 16/29 µs 980 nm:4.6×1014 52 高光增益探测器 石墨烯/PbS量子点 可见光-短波近红外 600 nm:5×107 10/100 ms 600 nm:7×1013 29 MoS2/HgTe量子点 600~2100 可见光:5 ×103 − 可见光:6.4×1012
2 µm:101253 BP/WSe2 400~1600 637 nm:103
1550 nm:0.50.8/0.8 ms 637 nm:1014
1550 nm:101054 MoS2/PbS量子点 400~1500 635 nm:6×105 0.3~0.4 s 635 nm:5×1011 55 PbI2/WS2 500~1000 450 nm:7.1×104 24/33 ms 450 nm:4.9×1013 56 WSe2/In2O3 550~1300 940 nm:3.5×104 20 ms 940 nm:1.95×1016 57 石墨烯/WS2/石墨烯 可见-近红外 700 nm:2.5×102 40~65 µs 700 nm:2.2×1012 58 PdSe2/MoS2 405−10600 10.6 µm:42.1 74.5/93.1 ms 10.6 µm:8.21×109 59 -
[1] WANG P, XIA H, Li Q, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers[J]. Small, 2019, 15(46): 1904396. doi: 10.1002/smll.201904396 [2] WANG F K, ZHANG Y, GAO Y, et al. 2D metal Chalcogenides for IR photodetection[J]. Small, 2019, 15(30): 1901347. doi: 10.1002/smll.201901347 [3] CHEN H Y, LIU H, ZHANG ZH M, et al. Nanostructured photodetectors: from ultraviolet to terahertz[J]. Advanced Materials, 2016, 28(3): 403-433. doi: 10.1002/adma.201503534 [4] WANG X D, SHEN H, CHEN Y, et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm[J]. Advanced Science, 2019, 6(15): 1901050. doi: 10.1002/advs.201901050 [5] ROGALSKI A. HgCdTe infrared detector material: history, status and outlook[J]. Reports on Progress in Physics, 2005, 68(10): 2267-2336. doi: 10.1088/0034-4885/68/10/R01 [6] LIN CH, ANSELM A, KUO C H, et al. Type-II InAs/InGaSb SL photodetectors[J]. Proceedings of SPIE, 2000, 3948: 133-144. doi: 10.1117/12.382112 [7] GREIN C H, YOUNG P M, FLATTÉ M E, et al. Long wavelength InAs/InGaSb infrared detectors: optimization of carrier lifetimes[J]. Journal of Applied Physics, 1995, 78(12): 7143-7152. doi: 10.1063/1.360422 [8] ROGALSKI A. Comparison of the performance of quantum well and conventional bulk infrared photodetectors[J]. Infrared Physics &Technology, 1997, 38(5): 295-310. [9] ZHANG Y G, GU Y, TIAN ZH B, et al. Wavelength extended 2.4 µm heterojunction InGaAs photodiodes with InAlAs cap and linearly graded buffer layers suitable for both front and back illuminations[J]. Infrared Physics &Technology, 2008, 51(4): 316-321. [10] RICHARDS P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1): 1-24. [11] ROGALSKI A. Recent progress in infrared detector technologies[J]. Infrared Physics &Technology, 2011, 54(3): 136-154. [12] TAN CH L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. doi: 10.1021/acs.chemrev.6b00558 [13] JARIWALA D, MARKS T J, HERSAM M C. Mixed-dimensional van der Waals heterostructures[J]. Nature Materials, 2017, 16(2): 170-181. doi: 10.1038/nmat4703 [14] MIRÓ P, AUDIFFRED M, HEINE T. An atlas of two-dimensional materials[J]. Chemical Society Reviews, 2014, 43(18): 6537-6554. doi: 10.1039/C4CS00102H [15] HU Y, CHEN T, WANG X Q, et al. Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps[J]. Nano Research, 2017, 10(4): 1434-1447. doi: 10.1007/s12274-017-1525-3 [16] HU Y, MAO L Y, YUAN X, et al. Controllable growth and flexible optoelectronic devices of regularly-assembled Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks[J]. Nano Research, 2020, 13(8): 2226-2232. doi: 10.1007/s12274-020-2841-6 [17] HU Y, QI ZH H, LU J Y, et al. Van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes[J]. Chemistry of Materials, 2019, 31(12): 4524-4535. doi: 10.1021/acs.chemmater.9b01151 [18] WANG X X, HU Y, MO J B, et al. Arsenene: a potential therapeutic agent for acute Promyelocytic Leukaemia cells by acting on nuclear proteins[J]. Angewandte Chemie International Edition, 2020, 59(13): 5151-5158. doi: 10.1002/anie.201913675 [19] BULLOCK J, AMANI M, CHO J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J]. Nature Photonics, 2018, 12(10): 601-607. doi: 10.1038/s41566-018-0239-8 [20] GAO A Y, LAI J W, WANG Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures[J]. Nature Nanotechnology, 2019, 14(3): 217-222. doi: 10.1038/s41565-018-0348-z [21] CASTELLANOS-GOMEZ A, BARKELID M, GOOSSENS A M, et al. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor[J]. Nano Letters, 2012, 12(6): 3187-3192. doi: 10.1021/nl301164v [22] MATTHEISS L F. Band structures of transition-metal-dichalcogenide layer compounds[J]. Physical Review B, 1973, 8(8): 3719-3740. doi: 10.1103/PhysRevB.8.3719 [23] CASTELLANOS-GOMEZ A. Black phosphorus: narrow gap, wide applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4280-4291. doi: 10.1021/acs.jpclett.5b01686 [24] LONG M SH, WANG P, FANG H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi: 10.1002/adfm.201803807 [25] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for Graphene[J]. Nature, 2012, 490(7419): 192-200. doi: 10.1038/nature11458 [26] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of Graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. doi: 10.1021/cr900070d [27] SUN ZH H, LIU ZH K, LI J H, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Advanced Materials, 2012, 24(43): 5878-5883. doi: 10.1002/adma.201202220 [28] ZHANG Y ZH, LIU T, MENG B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4(1): 1811. doi: 10.1038/ncomms2830 [29] KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. doi: 10.1038/nnano.2012.60 [30] GROTEVENT M J, HAIL C U, YAKUNIN S, et al. Nanoprinted quantum dot-graphene photodetectors[J]. Advanced Optical Materials, 2019, 7(11): 1900019. doi: 10.1002/adom.201900019 [31] KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793. doi: 10.1038/nnano.2014.215 [32] CLIFFORD J P, KONSTANTATOS G, JOHNSTON K W, et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors[J]. Nature Nanotechnology, 2009, 4(1): 40-44. doi: 10.1038/nnano.2008.313 [33] KONSTANTATOS G. Current status and technological prospect of photodetectors based on two-dimensional materials[J]. Nature Communications, 2018, 9(1): 5266. doi: 10.1038/s41467-018-07643-7 [34] NIKITSKIY I, GOOSSENS S, KUFER D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7(1): 11954. doi: 10.1038/ncomms11954 [35] CHEN X Q, LIU X L, WU B, et al. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer[J]. Nano Letters, 2017, 17(10): 6391-6396. doi: 10.1021/acs.nanolett.7b03263 [36] BUSCEMA M, ISLAND J O, GROENENDIJK D J, et al. Photocurrent generation with two-dimensional van der waals semiconductors[J]. Chemical Society Reviews, 2015, 44(11): 3691-3718. doi: 10.1039/C5CS00106D [37] TANAKA A, MATSUMOTO S, TSUKAMOTO N, et al. Infrared focal plane array incorporating silicon IC process compatible bolometer[J]. IEEE Transactions on Electron Devices, 1996, 43(11): 1844-1850. doi: 10.1109/16.543017 [38] MATHER J C. Bolometers: ultimate sensitivity, optimization, and amplifier coupling[J]. Applied Optics, 1984, 23(4): 584-588. doi: 10.1364/AO.23.000584 [39] 解光勇. 光电探测器噪声特性分析[J]. 信息技术,2008(11):8-10. doi: 10.3969/j.issn.1009-2552.2008.11.003XIE G Y. Noise analysis for optoelectronic detector[J]. Information Technology, 2008(11): 8-10. (in Chinese) doi: 10.3969/j.issn.1009-2552.2008.11.003 [40] 王彦, 袁家虎. 一种提高CCD探测灵敏度的方法[J]. 光电工程,2000,27(6):5-8, 65. doi: 10.3969/j.issn.1003-501X.2000.06.002WANG Y, YUAN J H. A method for improving the CCD sensitivity[J]. Opto-Electronic Engineering, 2000, 27(6): 5-8, 65. (in Chinese) doi: 10.3969/j.issn.1003-501X.2000.06.002 [41] SZE S M, NG K K. Physics of Semiconductor Devices[M]. New York: John Wiley & Sons, 2006. [42] LONG M SH, LIU E F, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259. doi: 10.1021/acs.nanolett.5b04538 [43] WANG L, JIE J SH, SHAO ZH B, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19): 2910-2919. doi: 10.1002/adfm.201500216 [44] WU D, WANG Y G, ZENG L H, et al. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector[J]. ACS Photonics, 2018, 5(9): 3820-3827. doi: 10.1021/acsphotonics.8b00853 [45] JIA CH, WU D, WU E P, et al. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity[J]. Journal of Materials Chemistry C, 2019, 7(13): 3817-3821. doi: 10.1039/C8TC06398B [46] HOLLENHORST J N. Ballistic avalanche photodiodes: ultralow noise avalanche diodes with nearly equal ionization probabilities[J]. Applied Physics Letters, 1986, 49(9): 516-518. doi: 10.1063/1.97106 [47] JINDAL R P. Approaching fundamental limits on signal detection[J]. IEEE Transactions on Electron Devices, 1994, 41(11): 2133-2138. doi: 10.1109/16.333833 [48] WANG Y G, HUANG X W, WU D, et al. A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm[J]. Journal of Materials Chemistry C, 2018, 6(18): 4861-4865. doi: 10.1039/C8TC01237G [49] ZENG L H, LIN SH H, LOU ZH H, et al. Ultrafast and sensitive photodetector based on a PtSe2/Silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm[J]. NPG ASIA Materials, 2018, 10(4): 352-362. doi: 10.1038/s41427-018-0035-4 [50] ZHANG T F, LI ZH P, WANG J ZH, et al. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction[J]. Scientific Reports, 2016, 6(1): 38569. doi: 10.1038/srep38569 [51] XIAO P, MAO J, DING K, et al. Solution-processed 3D RGO-MoS2/Pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection[J]. Advanced Materials, 2018, 30(31): 1801729. doi: 10.1002/adma.201801729 [52] WU E P, WU D, JIA CH, et al. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared[J]. ACS Photonics, 2019, 6(2): 565-572. doi: 10.1021/acsphotonics.8b01675 [53] HUO N J, GUPTA S, KONSTANTATOS G. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 µm[J]. Advanced Materials, 2017, 29(17): 1606576. doi: 10.1002/adma.201606576 [54] YE L, WANG P, LUO W J, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 2017, 37: 53-60. doi: 10.1016/j.nanoen.2017.05.004 [55] KUFER D, NIKITSKIY I, LASANTA T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Advanced Materials, 2015, 27(1): 176-180. doi: 10.1002/adma.201402471 [56] QI ZH Y, YANG T F, LI D, et al. High-responsivity two-dimensional p-Pbi2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect[J]. Materials Horizons, 2019, 6(7): 1474-1480. doi: 10.1039/C9MH00335E [57] GUO N, GONG F, LIU J K, et al. Hybrid WSe2-In2O3 phototransistor with ultrahigh detectivity by efficient suppression of dark currents[J]. ACS Applied Materials &Interfaces, 2017, 9(39): 34489-34496. [58] YEH C H, CHEN H C, LIN H C, et al. Ultrafast monolayer In/Gr-WS2-Gr hybrid photodetectors with high gain[J]. ACS Nano, 2019, 13(3): 3269-3279. doi: 10.1021/acsnano.8b09032 [59] LONG M SH, WANG Y, WANG P, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability[J]. ACS Nano, 2019, 13(2): 2511-2519.