留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CCD非线性效应对双频光栅三维面形测量的影响

乔闹生 孙萍

乔闹生, 孙萍. CCD非线性效应对双频光栅三维面形测量的影响[J]. 中国光学(中英文), 2021, 14(3): 661-669. doi: 10.37188/CO.2020-0143
引用本文: 乔闹生, 孙萍. CCD非线性效应对双频光栅三维面形测量的影响[J]. 中国光学(中英文), 2021, 14(3): 661-669. doi: 10.37188/CO.2020-0143
QIAO Nao-sheng, SUN Ping. Influence of CCD nonlinearity effect on the three-dimensional shape measurement of dual frequency grating[J]. Chinese Optics, 2021, 14(3): 661-669. doi: 10.37188/CO.2020-0143
Citation: QIAO Nao-sheng, SUN Ping. Influence of CCD nonlinearity effect on the three-dimensional shape measurement of dual frequency grating[J]. Chinese Optics, 2021, 14(3): 661-669. doi: 10.37188/CO.2020-0143

CCD非线性效应对双频光栅三维面形测量的影响

doi: 10.37188/CO.2020-0143
基金项目: 国家自然科学基金资助项目(No. 61701050, No. 61703157, No. 61701050);电子薄膜与集成器件国家重点实验室开放课题资助项目(No. KFJJ201807);四川省教育厅科研项目(No. 2018Z073)
详细信息
    作者简介:

    乔闹生(1971—),男,湖南茶陵县人,博士/博士后,教授,硕士生导师,2000年于湖南师范大学理学院获得学士学位,2005年于四川大学电子信息学院获得硕士学位,2010 年于电子科技大学光电工程学院获得博士学位,2014年于中南大学博士后出站,主要从事光学信息处理、机器视觉等方面的研究。E-mail:naoshengqiao@163.com

    孙 萍(1979—),女,四川邛崃人,博士,教授,硕士生导师,2001年于重庆师范学院物理系获得学士学位,2010年于电子科技大学光电工程学院获得博士学位,主要从事先进材料与光电传感等方面的研究。E-mail:sunping19775525@163.com

  • 中图分类号: O438.2

Influence of CCD nonlinearity effect on the three-dimensional shape measurement of dual frequency grating

Funds: Supported by National Natural Science Foundation of China (No. 61701050, No. 61703157, No. 61701050), Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (No. KFJJ201807), Project of Sichuan Provincial Department of Education (No. 2018Z073)
More Information
  • 摘要: 在测量系统中,CCD的非线性效应会影响复杂光学三维面形的测量精度,针对这一问题,提出采用双频光栅投影消除CCD的非线性效应以提高测量精度。首先,分析了CCD非线性效应对三维面形测量的影响,给出了该情况下出现频谱混叠的解析推导和物理解释。然后,讨论了CCD非线性效应下的双频光栅测量原理,分析了此时变形条纹的光强分布及其经傅立叶变换后得到混叠频谱的原理。最后,给出了由等效波长来衡量测量精度的方法,推出了使用双频光栅投影测量三维面形高度信息的基本公式,并进行了理论分析。对最大绝对值与平均绝对值分别为24.3181 mm和1.0839 mm的物体进行仿真分析,测量值与实际值之间的最大绝对高度误差与平均绝对高度误差分别为0.8950 mm和0.0622 mm,提高双频光栅基频后,其对应值分别减小为0.3710 mm和0.0232 mm;在实验结果显示,当双频光栅的基频都增加2.5倍后,频谱中的基频与高级频谱间分离较好,测量精度提高。因此,采用双频光栅投影消除CCD非线性效应具有较强的实用性和很好的发展前景。

     

  • 图 1  测量系统光路图

    Figure 1.  Optical path of measurement system

    图 2  模拟物体及沿着x轴方向频谱分布

    Figure 2.  Simulation object and spectrum distributions along x axis

    图 3  系统存在非线性效应时仿真结果图

    Figure 3.  Simulation results when the system has nonlinearity effect

    图 4  实验装置示意图

    Figure 4.  Schematic diagram of experimental setup

    图 5  系统为非线性情况时的实验结果图

    Figure 5.  Experimental results when the system has nonlinearity effect

  • [1] TAKEDA M, MUTOH K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 1983, 22(24): 3977. doi: 10.1364/AO.22.003977
    [2] QIAO N SH, QUAN CH G. A novel phase retrieval method in fringe projection based on phase-shifting algorithm[J]. Journal of Optics, 2018, 47(4): 534-541. doi: 10.1007/s12596-018-0480-z
    [3] AO M, ZHANG L, SHI X G, et al. Measurement of the three-dimensional surface deformation of the Jiaju landslide using a surface-parallel flow model[J]. Remote Sensing Letters, 2019, 10(8): 776-785. doi: 10.1080/2150704X.2019.1608601
    [4] 祝祥, 邵双运, 宋志军. 基于线结构光传感器的轨道板几何形貌检测方法[J]. 中国光学,2018,11(5):841-850. doi: 10.3788/co.20181105.0841

    ZHU X, SHAO SH Y, SONG ZH J. A detection method based on line-structured light sensor for geometrical morphology of track slab[J]. Chinese Optics, 2018, 11(5): 841-850. (in Chinese) doi: 10.3788/co.20181105.0841
    [5] 张旭, 邵双运, 祝祥, 等. 光学三维扫描仪光强传递函数的测量和校正[J]. 中国光学,2018,11(1):123-130. doi: 10.3788/co.20181101.0123

    ZHANG X, SHAO SH Y, ZHU X, et al. Measurement and calibration of the intensity transform function of the optical 3D profilometry system[J]. Chinese Optics, 2018, 11(1): 123-130. (in Chinese) doi: 10.3788/co.20181101.0123
    [6] 杜永兆, 冯国英, 张凯, 等. CCD非线性效应对剪切干涉法波前检测的影响[J]. 强激光与粒子束,2010,22(8):1775-1779. doi: 10.3788/HPLPB20102208.1775

    DU Y ZH, FENG G Y, ZHANG K, et al. Effect of CCD nonlinearity on wavefront detection by shearing interferometry[J]. High Power Laser and Particle Beams, 2010, 22(8): 1775-1779. (in Chinese) doi: 10.3788/HPLPB20102208.1775
    [7] 于杰. 用于相移点衍射干涉仪的加权最小二乘相位提取算法[J]. 中国光学与应用光学,2010,3(6):605-615.

    YU J. Weighted least square phase extraction algorithm for phase-shifting point diffraction interferometer[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(6): 605-615. (in Chinese)
    [8] 苏轲, 陈文静. 小波变换轮廓术抑制CCD非线性的分析[J]. 光学技术,2009,35(1):37-40, 44. doi: 10.3321/j.issn:1002-1582.2009.01.006

    SU K, CHEN W J. Analyzing wavelet transform profilometry in the restraining CCD nonlinear characteristic[J]. Optical Technique, 2009, 35(1): 37-40, 44. (in Chinese) doi: 10.3321/j.issn:1002-1582.2009.01.006
    [9] FU Y J, JIANG G Y, CHEN F Y. A novel Fourier transform profilometry based on dual-frequency grating[J]. Optik, 2012, 123(10): 863-869. doi: 10.1016/j.ijleo.2011.06.055
    [10] 武迎春, 曹益平, 肖焱山. 基于双频复合光栅投影的陡变物体三维面形测量[J]. 光电子·激光,2012,23(12):2362-2367.

    WU Y CH, CAO Y P, XIAO Y SH. 3D shape measurement for a discontinuous object based on a dual frequency composite grating[J]. Journal of Optoelectronics·Laser, 2012, 23(12): 2362-2367. (in Chinese)
    [11] PENG K, CAO Y P, WU Y CH, et al. A dual-frequency online PMP method with phase-shifting parallel to moving direction of measured object[J]. Optics Communications, 2017, 383: 491-499. doi: 10.1016/j.optcom.2016.09.048
    [12] HU E Y, FANG H F. Surface profile inspection of a moving object by using dual-frequency Fourier transform profilometry[J]. Optik, 2011, 122: 1245-1248. doi: 10.1016/j.ijleo.2010.08.007
    [13] LI J, SU X Y, GUO L R. Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes[J]. Proceedings of SPIE, 1990, 29(12): 1439-1444.
    [14] LU F, WU CH D, YANG J K. Optimized dithering technique for three-dimensional shape measurement with projector defocusing[J]. Optics Communications, 2019, 430: 246-255. doi: 10.1016/j.optcom.2018.08.034
    [15] FU G K, CAO Y P, WANG Y P, et al. Three-dimensional shape measurement based on binary fringe conventional projection[J]. Transactions of the Institute of Measurement and Control, 2019, 41(14): 4073-4083. doi: 10.1177/0142331219848029
    [16] WANG Y W, LIU L, WU J, et al. Enhanced phase-coding method for three-dimensional shape measurement with half-period codeword[J]. Applied Optics, 2019, 58(27): 7359-7366. doi: 10.1364/AO.58.007359
    [17] 王月敏, 张宗华, 高楠. 基于全场条纹反射的镜面物体三维面形测量综述[J]. 光学 精密工程,2018,26(5):1014-1027. doi: 10.3788/OPE.20182605.1014

    WANG Y M, ZHANG Z H, GAO N. Review on three-dimensional surface measurements of specular objects based on full-field fringe reflection[J]. Optics and Precision Engineering, 2018, 26(5): 1014-1027. (in Chinese) doi: 10.3788/OPE.20182605.1014
    [18] 陈瑜, 潘永强, 刘丙才, 等. 基于窗口傅里叶变换的线性相位误差抑制[J]. 光学 精密工程,2020,28(6):1314-1322. doi: 10.3788/OPE.20202806.1314

    CHEN Y, PAN Y Q, LIU B C, et al. Linear phase error suppression technique based on window Fourier transform[J]. Optics and Precision Engineering, 2020, 28(6): 1314-1322. (in Chinese) doi: 10.3788/OPE.20202806.1314
    [19] 尚万祺, 张文喜, 伍洲, 等. 全视场外差干涉三维测量系统[J]. 光学 精密工程,2019,27(10):2097-2104. doi: 10.3788/OPE.20192710.2097

    SHANG W Q, ZHANG W X, WU ZH, et al. Three-dimensional measurement system based on full-field heterodyne interferometry[J]. Optics and Precision Engineering, 2019, 27(10): 2097-2104. (in Chinese) doi: 10.3788/OPE.20192710.2097
  • 加载中
图(5)
计量
  • 文章访问数:  810
  • HTML全文浏览量:  148
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 修回日期:  2020-09-21
  • 网络出版日期:  2021-04-30
  • 刊出日期:  2021-05-14

目录

    /

    返回文章
    返回