留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Room-temperature terahertz photodetectors based on black arsenic-phosphorus

DONG Zhuo CHEN Jie ZHU Yi-fan YANG Jie WANG Zhong-chang ZHANG Kai

董卓, 陈捷, 朱一帆, 杨洁, 王中长, 张凯. 黑砷磷室温太赫兹探测器[J]. 中国光学(中英文), 2021, 14(1): 182-195. doi: 10.37188/CO.2020-0175
引用本文: 董卓, 陈捷, 朱一帆, 杨洁, 王中长, 张凯. 黑砷磷室温太赫兹探测器[J]. 中国光学(中英文), 2021, 14(1): 182-195. doi: 10.37188/CO.2020-0175
DONG Zhuo, CHEN Jie, ZHU Yi-fan, YANG Jie, WANG Zhong-chang, ZHANG Kai. Room-temperature terahertz photodetectors based on black arsenic-phosphorus[J]. Chinese Optics, 2021, 14(1): 182-195. doi: 10.37188/CO.2020-0175
Citation: DONG Zhuo, CHEN Jie, ZHU Yi-fan, YANG Jie, WANG Zhong-chang, ZHANG Kai. Room-temperature terahertz photodetectors based on black arsenic-phosphorus[J]. Chinese Optics, 2021, 14(1): 182-195. doi: 10.37188/CO.2020-0175

黑砷磷室温太赫兹探测器

详细信息
  • 中图分类号: TN382

Room-temperature terahertz photodetectors based on black arsenic-phosphorus

doi: 10.37188/CO.2020-0175
Funds: Supported by National Natural Science Foundation of China (No. 61927813,No. 61875223,No. 61922082); National Key R & D Program of China (No. 2016YFE015700)
More Information
    Author Bio:

    DONG Zhuo (1994—), male, born in Yingcheng City, Hubei province, Ph. D candidate, School of Nano-Tech and Nano-Bionics, University of Science and Technology of China. He got his bachelor's degree from Hubei University in 2017. His research interests are room-temperature terahertz photodetectors based on two-dimensional materials. E-mail: zdong2018@sinano.ac.cn

    ZHANG Kai (1983—), male, born in Xiantao City, Hubei province Ph. D, Professor, Nano-Tech and Nano-Bionics, Chinese Academy of Science. He got his Ph. D. from Hong Kong Polytechnic University in 2011. His research interests are in the areas of narrow-gap two-dimensional (2D) materials and devices, with research activities ranging from the exploration and controllable growth of narrow-gap 2D semiconductors (such as black phosphorus) and topological materials, as well as the development of infrared & terahertz lasers and photodetectors. E-mail: kzhang2015@sinano.ac.cn

    Corresponding author: zhongchang.wang@inl.intkzhang2015@sinano.ac.cn
  • 摘要: 由于太赫兹波与众多物质之间存在着丰富的相互作用,太赫兹技术在众多领域均有应用需求。因此,基于独特物理机制和优异材料特性的高灵敏度、便携式太赫兹探测器的研制刻不容缓。黑砷磷是一种新型二维材料,其带隙和输运特性随化学组分可调,在光电探测领域被广泛关注。目前基于黑砷磷的研究集中在红外探测方面,而对于太赫兹探测的应用未见报道。本文介绍了一种基于黑砷磷的天线耦合太赫兹探测器。实验结果表明,在探测过程中存在两种不同的探测机制,并且两者之间存在竞争关系。通过改变黑砷磷的化学组分可以定制不同的探测机制,使其达到最优响应性能。在平衡材料带隙和载流子迁移率的情况下,探测器实现了室温下对0.37 THz电磁波的灵敏探测,其电压响应度和噪声等效功率分别为28.23 V/W和0.53 nW/Hz1/2

     

  • Figure 1.  (a) Top view and side view of the b-AsxP1−x crystal structure. (The armchair (X) and zigzag (Y) crystal axis are shown on the graph) (b) The HRTEM image of the b-As0.1P0.9. (c) The corresponding SAED pattern of the b-As0.1P0.9. (d) EDX result of the b-AsxP1−x (x=0.1 and 0.5) flakes, insert: EDS elemental mapping of the b-As0.1P0.9. (e) Raman spectra of b-AsxP1−x with different chemical compositions. (f) Plots of infrared absorption of different b-AsxP1−x samples

    Figure 2.  (a) Schematic diagram of the b-AsxP1−x detector, including the measurement circuit. (b) Schematic diagram of the measurement system. (c) Spatial distributions of the field enhancement factors for the THz antenna. (d, e) False-color SEM image of the b-AsxP1−x detector

    Figure 3.  (a, c) Output characteristics of the b-As0.1P0.9 detector (a) and b-As0.5P0.5 detector (c), with VG ranging from −6 V to 6 V with steps of 3 V. Transfer characteristics for the b-As0.1P0.9 detector (b) and the b-As0.5P0.5 detector (d) with a fixed VDS = 50 mV

    The electrical properties of the as-fabricated BP detector. (a) Output characteristics of the BP detector as function of different VG from −8 V to 8 V with steps of 4 V. It shows a good Ohmic contact and a large tunable of carrier density by gate voltage. (b) Transfer characteristics for the BP detector with a fixed VDS=100 mV. It exhibits a typical p-type ambipolar transport behavior. The field-effect hole mobility measured from the transfer curve is about 725 cm2/V·s.

    Figure 4.  Frequency dependence of the responsivity for the b-As0.1P0.9 detector (a) and b-As0.5P0.5 detector (c), measured at VG = 0 V. Gate bias dependence of the responsivity for the b-As0.1P0.9 detector (b) and the b-As0.5P0.5 detector (d), measured at the optimal frequency as obtained from (a) and (c), respectively

    Figure 5.  (a) Schema of the detector based on the self-mixing theory. (b) Photo-excitation and relaxation processes of the carriers in the b-AsxP1−x flakes irradiated by terahertz photons and the schematic diagram of the MSM structure based on EIW theory

    Derivative of conductivity multiplied by the resistance, as a function of VG, in b-As0.1P0.9(a) and b-As0.5P0.5 (b) detector. This is the expected responsivity following a plasma-wave detection mechanism. If the domain mechanism is the PW mechanism, the measured shape of the RV curve should be in excellent agreement with that curves.

    Figure 6.  NEP as a function of the gate voltage for b-As0.1P0.9 detector(a) and b-As0.5P0.5 detector (b), insert: NV as a function of the VG. Transmission images of a key (c) and a pair of metal scissors (d) inside an envelope by the b-As0.1P0.9 detector at 0.37 THz

    (a, b) Atomic ratio of As and P elements for the b-As0.1P0.9 and b-As0.5P0.5, respectively. It proves the b-As0.1P0.9 and b-As0.5P0.5 have an accurate elemental ratio of about 1:9 and 5:5. (c, d) The AFM images of few-layer b-As0.1P0.9 and b-As0.5P0.5 nanoflakes on a Si substrate with 285 nm SiO2. It shows clean surface and flat shape, proving the high quality of the mateials. And the corresponding linear scan analysis of height display in the images with a thickness of 14 nm and 16 nm for b-As0.1P0.9 and b-As0.5P0.5 nanoflakes, respectively.

    The terahertz response characteristics of the same BP detector. (a) Frequency dependence of the voltage responsivityfor BP detector at VG = 0 V. It shows several clear response peaks for the detector and the maximum voltage responsivity located at 0.27 THz.(b, c) Voltage responsivity and noise equivalent power as a function of the gate voltage at 0.27 THz. The maximum RV and minimum NEP of about 8.1 V/W and 1.08 nW/Hz1/2 were measured from the curve, respectively.

  • [1] GUO W L, WANG L, CHEN X SH, et al. Graphene-based broadband terahertz detector integrated with a square-spiral antenna[J]. Optics Letters, 2018, 43(8): 1647-1650. doi: 10.1364/OL.43.001647
    [2] CASTILLA S, TERRÉS B, AUTORE M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction[J]. Nano Letters, 2019, 19(5): 2765-2773. doi: 10.1021/acs.nanolett.8b04171
    [3] VITI L, PURDIE D G, LOMBARDO A, et al. HBN-encapsulated, graphene-based, room-temperature terahertz receivers, with high speed and low noise[J]. Nano Letters, 2020, 20(5): 3169-3177. doi: 10.1021/acs.nanolett.9b05207
    [4] LIU CH L, WANG L, CHEN X SH, et al. Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection[J]. Carbon, 2018, 130: 233-240. doi: 10.1016/j.carbon.2018.01.020
    [5] HUANG ZH M, TONG J CH, HUANG J G, et al. Room-temperature photoconductivity far below the semiconductor bandgap[J]. Advanced Materials, 2014, 26(38): 6594-6598. doi: 10.1002/adma.201402352
    [6] CHEREDNICHENKO S, HAMMAR A, BEVILACQUA S, et al. A room temperature bolometer for terahertz coherent and incoherent detection[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 395-402. doi: 10.1109/TTHZ.2011.2164654
    [7] SAKHNO M, GOLENKOV A, SIZOV F. Uncooled detector challenges: millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors[J]. Journal of Applied Physics, 2013, 114(16): 164503. doi: 10.1063/1.4826364
    [8] ROGALSKI A, SIZOV F. Terahertz detectors and focal plane arrays[J]. Opto-Electronics Review, 2011, 19(3): 346-404.
    [9] SUN Y F, SUN J D, ZHOU Y, et al. Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas[J]. Applied Physics Letters, 2011, 98(25): 252103. doi: 10.1063/1.3601489
    [10] VITI L, POLITANO A, VITIELLO M S. Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges[J]. APL Materials, 2017, 5(3): 035602. doi: 10.1063/1.4979090
    [11] VICARELLI L, VITIELLO M S, COQUILLAT D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10): 865-871. doi: 10.1038/nmat3417
    [12] GUO W L, DONG ZH, XU Y J, et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices[J]. Advanced Science, 2020, 7(5): 1902699. doi: 10.1002/advs.201902699
    [13] TREDICUCCI A, VITIELLO M S. Device concepts for graphene-based terahertz photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 8500109.
    [14] DYAKONOV M, SHUR M. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current[J]. Physical Review Letters, 1993, 71(15): 2465-2468. doi: 10.1103/PhysRevLett.71.2465
    [15] VITI L, HU J, COQUILLAT D, et al. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response[J]. Scientific Reports, 2016, 6: 20474. doi: 10.1038/srep20474
    [16] CAI X H, SUSHKOV A B, SUESS R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene[J]. Nature Nanotechnology, 2014, 9(10): 814-819. doi: 10.1038/nnano.2014.182
    [17] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
    [18] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 17033. doi: 10.1038/natrevmats.2017.33
    [19] MELLNIK A R, LEE J S, RICHARDELLA A, et al. Spin-transfer torque generated by a topological insulator[J]. Nature, 2014, 511(7510): 449-451. doi: 10.1038/nature13534
    [20] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35
    [21] HU Y, QI ZH H, LU J Y, et al. van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes[J]. Chemistry of Materials, 2019, 31(12): 4524-4535. doi: 10.1021/acs.chemmater.9b01151
    [22] QI ZH H, HU Y, JIN ZH, et al. Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents[J]. Physical Chemistry Chemical Physics, 2019, 21(23): 12087-12090. doi: 10.1039/C9CP01052A
    [23] WANG X X, HU Y, MO J B, et al. Arsenene: a potential therapeutic agent for acute promyelocytic leukaemia cells by acting on nuclear proteins[J]. Angewandte Chemie International Edition, 2020, 59(13): 5151-5158. doi: 10.1002/anie.201913675
    [24] BANDURIN D A, SVINTSOV D, GAYDUCHENKO I, et al. Resonant terahertz detection using graphene plasmons[J]. Nature Communications, 2018, 9(1): 5392. doi: 10.1038/s41467-018-07848-w
    [25] LIU CH L, WANG L, CHEN X SH, et al. Top-gated black phosphorus phototransistor for sensitive broadband detection[J]. Nanoscale, 2018, 10(13): 5852-5858. doi: 10.1039/C7NR09545G
    [26] TANG W W, POLITANO A, GUO CH, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator[J]. Advanced Functional Materials, 2018, 28(31): 1801786. doi: 10.1002/adfm.201801786
    [27] QIN H, SUN J D, LIANG SH X, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor[J]. Carbon, 2017, 116: 760-765. doi: 10.1016/j.carbon.2017.02.037
    [28] VITI L, COQUILLAT D, POLITANO A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states[J]. Nano Letters, 2016, 16(1): 80-87. doi: 10.1021/acs.nanolett.5b02901
    [29] XIE Y, LIANG F, CHI SH M, et al. Defect engineering of MoS2 for room-temperature terahertz photodetection[J]. ACS Applied Materials &Interfaces, 2020, 12(6): 7351-7357.
    [30] LIU B L, KÖPF M, ABBAS A N, et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties[J]. Advanced Materials, 2015, 27(30): 4423-4429. doi: 10.1002/adma.201501758
    [31] PRADHAN N R, GARCIA C, LUCKING M C, et al. Raman and electrical transport properties of few-layered arsenic-doped black phosphorus[J]. Nanoscale, 2019, 11(39): 18449-18463. doi: 10.1039/C9NR04598H
    [32] LONG M SH, GAO A Y, WANG P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J]. Science Advances, 2017, 3(6): e1700589. doi: 10.1126/sciadv.1700589
    [33] TAN W C, HUANG L, NG R J, et al. A black phosphorus carbide infrared phototransistor[J]. Advanced Materials, 2018, 30(6): 1705039. doi: 10.1002/adma.201705039
    [34] WU F, XIA H, SUN H D, et al. AsP/InSe van der waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity[J]. Advanced Functional Materials, 2019, 29(12): 1900314. doi: 10.1002/adfm.201900314
    [35] SHI X Y, WANG T, WANG J, et al. Synthesis of black arsenic-phosphorus and its application for Er-doped fiber ultrashort laser generation[J]. Optical Materials Express, 2019, 9(5): 2348-2357. doi: 10.1364/OME.9.002348
    [36] SUN J D, QIN H, LEWIS R A, et al. Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector[J]. Applied Physics Letters, 2012, 100(17): 173513. doi: 10.1063/1.4705306
    [37] WU C Y, ZHOU W, YAO N J, et al. Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector[J]. Applied Physics Express, 2019, 12(5): 052013. doi: 10.7567/1882-0786/ab14fc
    [38] LI S S. Semiconductor Physical Electronics[M]. Boston, MA: Springer, 1993.
    [39] SUN J D, FENG W, DING Q F, et al. Smaller antenna-gate gap for higher sensitivity of GaN/AlGaN HEMT terahertz detectors[J]. Applied Physics Letters, 2020, 116(16): 161109. doi: 10.1063/1.5142436
  • 加载中
图(10)
计量
  • 文章访问数:  2399
  • HTML全文浏览量:  777
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2020-10-13
  • 网络出版日期:  2020-12-25
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回