留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中红外Fe2+:ZnSe激光器研究进展

徐飞 潘其坤 陈飞 张阔 于德洋 何洋 孙俊杰

徐飞, 潘其坤, 陈飞, 张阔, 于德洋, 何洋, 孙俊杰. 中红外Fe2+:ZnSe激光器研究进展[J]. 中国光学(中英文), 2021, 14(3): 458-469. doi: 10.37188/CO.2020-0180
引用本文: 徐飞, 潘其坤, 陈飞, 张阔, 于德洋, 何洋, 孙俊杰. 中红外Fe2+:ZnSe激光器研究进展[J]. 中国光学(中英文), 2021, 14(3): 458-469. doi: 10.37188/CO.2020-0180
XU Fei, PAN Qi-kun, CHEN Fei, ZHANG Kuo, YU De-yang, HE Yang, SUN Jun-jie. Development progress of Fe2+:ZnSe lasers[J]. Chinese Optics, 2021, 14(3): 458-469. doi: 10.37188/CO.2020-0180
Citation: XU Fei, PAN Qi-kun, CHEN Fei, ZHANG Kuo, YU De-yang, HE Yang, SUN Jun-jie. Development progress of Fe2+:ZnSe lasers[J]. Chinese Optics, 2021, 14(3): 458-469. doi: 10.37188/CO.2020-0180

中红外Fe2+:ZnSe激光器研究进展

基金项目: 国家自然科学基金(No. 61705219);吉林省优秀青年人才基金(No. 20190103133JH);激光与物质相互作用国家重点实验室基金(No. SKLLIM1914)
详细信息
    作者简介:

    徐 飞(1996—),男,山西太原人,硕士研究生,2019年于太原理工大学获得学士学位,主要从事Fe2+:ZnSe激光器方面的研究。E-mail:xufei20202020@outlook.com

    潘其坤(1985—),男,河南开封人,博士,副研究员,硕士生导师,2014年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事红外高功率激光器及其应用技术研究。E-mail:panqikun2005@163.com

  • 中图分类号: TN248

Development progress of Fe2+:ZnSe lasers

Funds: Supported by Nature National Science Foundation of China (No. 61705219); Jilin Province Science and Technology Development Plan Project (No. 20190103133JH); Foundation of State Key Laboratory of Laser interaction with Matter (No. SKLLIM1914)
More Information
  • 摘要: 发光谱位于3~5 μm大气窗口处的中红外激光在医疗、工业加工、大气遥感、空间通讯、红外对抗等领域具有广泛的应用前景。以过渡金属(TM)掺杂Ⅱ~Ⅵ族硫化物晶体作为增益介质的激光器件可实现中红外激光输出,其中Fe2+:ZnSe激光器具有转换效率高、中红外波段可调谐范围宽、结构紧凑等优点,是中红外波段实现高功率、高能量、短脉冲的最有效途径之一。随着近些年材料技术的发展,Fe2+:ZnSe激光器发展迅速,逐渐成为热点之一。本文综述了以Fe2+:ZnSe激光器为代表的TM2+:Ⅱ~Ⅵ族激光器的发展历程,介绍并分析了Fe2+:ZnSe增益介质的制备方法,讨论了影响Fe2+:ZnSe激光器性能的泵浦源及因素,综合评述了Fe2+:ZnSe激光器的输出特性,总结了Fe2+:ZnSe激光器在室温和超短脉冲方向上的最新进展,并展望了Fe2+:ZnSe激光器后续可能的发展方向。

     

  • 图 1  Fe2+:ZnSe能级结构[9]

    Figure 1.  Energy level structure of Fe2+:ZnSe[9]

    图 2  (a)室温下及(b)14 K和300 K下Fe2+:ZnSe晶体的吸收截面和发射截面[11]

    Figure 2.  Absorption cross-section and emission cross-section of Fe2+:ZnSe crystal at room temperature (a) and at (b) 14 K and 300 K[11]

    图 3  Bridgman法装置简图[21]

    Figure 3.  The growth diagram for the Bridgman method[21]

    图 4  键合前元件结构示意图。(a)一层掺杂层结构图;(b)两层掺杂层结构图[31]

    Figure 4.  Schematic diagram of the assembly of elements before bonding. (a) Assembly for fabricating elements with one diffusion-doped internal layer; (b) assembly for fabricating elements with two diffusion-doped internal layers[31]

    图 5  键合前的半月板结构示意图[32]

    Figure 5.  Schematic diagram of the assembly of elements with meniscus structure before bonding[32]

    图 6  实验方案示意图。 (a)斜入射腔结构光路;(b)正入射腔结构光路[37]

    Figure 6.  Schemes of the experiments. (a) Inclined pumping; (b) coaxial pumping[37]

    图 7  四端泵浦腔结构光路[45]

    Figure 7.  Light path of the quadruple end pump cavity[45]

    图 8  Fe2+:ZnSe激光输出斜率。(a)未镀石墨样品;(b)镀石墨样品[58](d:光斑直径)

    Figure 8.  Output energy of the Fe2+:ZnSe laser. (a) Sample #1 without graphite coating; (b) sample #2 coated with graphite[58] (d: spot diameter)

    表  1  Fe2+:ZnSe激光器泵浦源的研究情况

    Table  1.   Research status of Fe2+:ZnSe lasers’ pump source

    作者(年)泵浦源工作温度激光输出波长激光输出参数
    Adams(1999)[6]Er:YAG 2.7 μm5~180 K3980~4540 nm12 μJ(脉冲) 48 μs,100 Hz
    Kernal(2005)[11]Nd:YAG(D2拉曼) 2.92 μm(2nd stokes)室温3900~4800 nm1 μJ
    Akimov(2006)[48]Er:YAG 2.94 μm室温3950~5050 nm370 μJ(脉冲) 100 ns,60 Hz
    Doroshenko(2010)[49]Er:YAG 2.94 μm室温4300~4600 nm0.58 mJ(脉冲) 1 Hz
    Myoung(2011)[50]Er:Cr:YSGG 2.8 μm,20 ns室温4370 nm3.6 mJ(脉冲) 6.7 Hz
    Fedorov(2012)[51]Cr:ZnSe 2.7 μm77 K4140 nm1.5 W(连续激光)
    Frolov(2013)[41]Er:YAG 2.94 μm85 K4100 nm2.1 J(脉冲) 0.3−0.5 μs
    Velikanov(2014)[52]HF 2.6~3.1 μm室温4600~4700 nm30 mJ(脉冲) 125 ns
    Martyshkin(2015)[53]Er:YAG 2.94 μm,自由运转77 K3880~4170 nm0.35 J(脉冲) 150 μs,100 Hz
    Velikanov(2016)[54]HF 2.6~3.1 μm室温1.2 J(脉冲)
    Balabanov(2018)[31]HF 140 ns室温480 mJ(脉冲)
    Frolov(2019)[27]Er:YAG 2.94 μm,自由运转278~291 K1.6 J(脉冲)
    李英一(2019)[55]Ho:YAG(ZGP-OPO) 2.6~3.1 μm288~301 K4030.2~4593.6 nm58 mW(脉冲) 2.7 ns
    李英一(2019)[56]Ho,Pr:LLF(Nd:YAG KTP-OPO) 2958 nm77 K4000 nm16.4 μJ(脉冲) 13.9 ns
    Uehara(2020)[57]Er:ZBLAN光纤2.8 μm,连续输出77 K4050 nm峰值功率1.1 kW 20 ns,40 kHz
    下载: 导出CSV
  • [1] 王旭, 谢冀江, 潘其坤, 等. 非链式脉冲氟化氘激光器的放电特性[J]. 发光学报,2015,36(9):1041-1046. doi: 10.3788/fgxb20153609.1041

    WANG X, XIE J J, PAN Q K, et al. Discharge characteristic of non-chain pulsed deuterium fluoride lasers[J]. Chinese Journal of Luminescence, 2015, 36(9): 1041-1046. (in Chinese) doi: 10.3788/fgxb20153609.1041
    [2] 阮鹏, 谢冀江, 张来明, 等. 紫外预电离放电引发的非链式脉冲DF激光器[J]. 发光学报,2013,34(4):450-455. doi: 10.3788/fgxb20133404.0450

    RUAN P, XIE J J, ZHANG L M, et al. UV-preionized electric-discharge non-chain pulsed DF laser[J]. Chinese Journal of Luminescence, 2013, 34(4): 450-455. (in Chinese) doi: 10.3788/fgxb20133404.0450
    [3] 周华, 姚传飞, 贾志旭, 等. 中红外可调谐大能量飞秒脉冲激光产生[J]. 发光学报,2020,41(4):435-441. doi: 10.3788/fgxb20204104.0435

    ZHOU H, YAO CH F, JIA ZH X, et al. Mid-infrared tunable high pulse energy femtosecond pulse laser generation[J]. Chinese Journal of Luminescence, 2020, 41(4): 435-441. (in Chinese) doi: 10.3788/fgxb20204104.0435
    [4] 程小劲, 李超, 徐飞, 等. Fe:ZnS/ZnSe中红外固体激光器研究进展[J]. 激光技术,2018,42(2):151-155. doi: 10.7510/jgjs.issn.1001-3806.2018.02.002

    CHEN X J, LI CH, XU F, et al. Progress in Fe:ZnS/ZnSe middle-infrared solid-state lasers[J]. Laser Technology, 2018, 42(2): 151-155. (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2018.02.002
    [5] DELOACH L D, PAGE R H, WILKE G D, et al. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media[J]. IEEE Journal of Quantum Electronics, 1996, 32(6): 885-895. doi: 10.1109/3.502365
    [6] ADAMS J J, BIBEAU C, PAGE R H, et al. 4.0-4.5- μm lasing of Fe: ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1720. doi: 10.1364/OL.24.001720
    [7] 陈媛芝, 张乐, 黄存新, 等. TM2+: Ⅱ-Ⅵ族中红外激光材料[J]. 化学进展,2015,27(5):511-521.

    CHEN Y ZH, ZHANG L, HUANG C X, et al. TM2+: Ⅱ-Ⅵ mid-infrared materials[J]. Progress in Chemistry, 2015, 27(5): 511-521. (in Chinese)
    [8] 潘其坤, 谢冀江, 陈飞, 等. 中红外室温大能量Fe2+:ZnSe激光器[J]. 中国激光,2018,45(11):1101001. doi: 10.3788/CJL201845.1101001

    PAN Q K, XIE J J, CHEN F, et al. Mid-infrared high energy Fe2+:ZnSe laser at room temperature[J]. Chinese Journal of Lasers, 2018, 45(11): 1101001. (in Chinese) doi: 10.3788/CJL201845.1101001
    [9] 潘其坤. 中红外固体激光器研究进展[J]. 中国光学,2015,8(4):557-566. doi: 10.3788/co.20150804.0557

    PAN Q K. Progress of mid-infrared solid-state laser[J]. Chinese Optics, 2015, 8(4): 557-566. (in Chinese) doi: 10.3788/co.20150804.0557
    [10] 孙骁, 韩隆, 王克强. 直接抽运中红外固体激光器研究进展[J]. 激光与光电子学进展,2017,54(5):050007.

    SUN X, HAN L, WANG K Q. Progress in directly pumping of mid-infrared solid-state lasers[J]. Laser &Optoelectronics Progress, 2017, 54(5): 050007. (in Chinese)
    [11] KERNAL J, FEDOROV V V, GALLIAN A, et al. 3.9−4.8 μm gain-switched lasing of Fe:ZnSe at room temperature[J]. Optics Express, 2005, 13(26): 10608-10615. doi: 10.1364/OPEX.13.010608
    [12] MIROV S B, FEDOROV V V, MARTYSHKIN D V, et al. Mid-IR gain media based on transition metal-doped II-VI chalcogenides[J]. Proceedings of SPIE, 2016, 9744: 97440A.
    [13] XIE R SH, ZHANG X Q, LIU H F. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots[J]. Materials Science and Engineering:B, 2014, 182: 86-91. doi: 10.1016/j.mseb.2013.11.023
    [14] LANCASTER A, COOK G, MCDANIEL S A, et al.. Fe:ZnSe channel waveguide laser operating at 4122 nm[C]. Proceedings of Science and Innovations 2015. Optical Society of America, 2015.
    [15] NING S G, FENG G Y, ZHANG H, et al. Fabrication, structure and optical application of Fe2+:ZnSe nanocrystalline film[J]. Optical Materials, 2019, 89: 473-479. doi: 10.1016/j.optmat.2019.02.002
    [16] IKESUE A, AUNG Y L. Ceramic laser materials[J]. Nature Photonics, 2008, 2(12): 721-727. doi: 10.1038/nphoton.2008.243
    [17] ZHOU T Y, ZHANG L, WEI SH, et al. MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution[J]. Journal of the European Ceramic Society, 2017, 38(2): 687-693.
    [18] YU SH Q, CARLONI D, WU Y Q. Microstructure development and optical properties of Fe:ZnSe transparent ceramics sintered by spark plasma sintering[J]. Journal of the American Ceramic Society, 2020, 103(8): 4159-4166. doi: 10.1111/jace.17144
    [19] 许毅, 吴玉松, 姜本学, 等. 国产Yb:YAG透明陶瓷实现激光输出[J]. 中国激光,2007,34(1):60. doi: 10.3321/j.issn:0258-7025.2007.01.027

    XU Y, WU Y S, JIANG B X, et al. Laser output of domestic Yb: YAG transparent ceramics[J]. Chinese Journal of Lasers, 2007, 34(1): 60. (in Chinese) doi: 10.3321/j.issn:0258-7025.2007.01.027
    [20] 胡家乐, 王汇霖, 梁晰童, 等. 材料多尺度结晶研究进展[J]. 中国科学: 技术科学,2020,50(6):650-666. doi: 10.1360/SST-2019-0417

    HU J L, WANG H L, LIANG X T, et al. Progress of multiscale materials crystallization[J]. SCIENTIA SINICA Technologica, 2020, 50(6): 650-666. (in Chinese) doi: 10.1360/SST-2019-0417
    [21] HE Y H, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications, 2018, 9(1): 1609. doi: 10.1038/s41467-018-04073-3
    [22] YIN L Y, JIE W Q, WANG T, et al. The effects of ACRT on the growth of ZnTe crystal by the temperature gradient solution growth technique[J]. Crystals, 2017, 7(3): 82. doi: 10.3390/cryst7030082
    [23] SEKHON M, LENT B, DOST S. Numerical study of liquid phase diffusion growth of SiGe subjected to accelerated crucible rotation[J]. Journal of Crystal Growth, 2016, 438: 90-98. doi: 10.1016/j.jcrysgro.2015.12.043
    [24] LIN G, BAO J, XU ZH J. A three-dimensional phase field model coupled with a lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field[J]. Computers &Fluids, 2014, 103: 204-214.
    [25] LYUBIMOVA T P, PARSHAKOVA Y N. Numerical investigation of heat and mass transfer during vertical Bridgman crystal growth under rotational vibrations[J]. Journal of Crystal Growth, 2014, 385: 82-87. doi: 10.1016/j.jcrysgro.2013.04.063
    [26] KOZLOVSKY V I, AKIMOV V A, Frolov M P, et al. Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase[J]. Physica Status Solidi (B), 2010, 247(6): 1553-1556. doi: 10.1002/pssb.200983165
    [27] FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I, et al. Study of a room temperature, monocrystalline Fe: ZnSe laser, pumped by a high-energy, free-running Er: YAG laser[J]. Laser Physics, 2019, 29(8): 085004. doi: 10.1088/1555-6611/ab2be3
    [28] 魏乃光, 蒋立朋, 李冬旭, 等. 化学气相沉积法制备ZnSe多晶材料的缺陷研究[J]. 人工晶体学报,2020,49(1):152-157.

    WEI N G, JIANG L P, LI D X, et al. Study on the defects of ZnSe polycrystalline materials prepared by chemical vapor deposition method[J]. Journal of Synthetic Crystals, 2020, 49(1): 152-157. (in Chinese)
    [29] 王锋, 常芳娥, 坚增运, 等. ZnSe晶体制备的工艺研究[J]. 西安工业学院学报,2005,25(1):61-63, 67.

    WANG F, CHANG F E, JIAN Z Y, et al. Preparation of ZnSe crystal from pure Zn and Se[J]. Journal of Xi'an Institute of Technology, 2005, 25(1): 61-63, 67. (in Chinese)
    [30] AVETISOV R I, BALABANOV S S, FIRSOV K N, et al. Hot-pressed production and laser properties of ZnSe: Fe2+[J]. Journal of Crystal Growth, 2018, 491: 36-41. doi: 10.1016/j.jcrysgro.2018.03.025
    [31] BALABANOV S S, FIRSOV K N, GAVRISHCHUK E M, et al. Laser properties of Fe2+:ZnSe fabricated by solid-state diffusion bonding[J]. Laser Physics Letters, 2018, 15(4): 045806. doi: 10.1088/1612-202X/aaa93f
    [32] BALABANOV S S, FIRSOV K N, GAVRISHCHUK E M, et al. Room-temperature lasing on Fe2+:ZnSe with meniscus inner doped layer fabricated by solid-state diffusion bonding[J]. Laser Physics Letters, 2019, 16(5): 055004. doi: 10.1088/1612-202X/ab09e8
    [33] FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B, et al. The energy and spectral characteristics of a room-temperature pulsed laser on a ZnS:Fe2+ polycrystal[J]. Laser Physics Letters, 2016, 13(4): 045004. doi: 10.1088/1612-2011/13/4/045004
    [34] FIRSOV K N, FROLOV M P, GAVRISHCHUK E M, et al. Laser on single-crystal ZnSe:Fe2+ with high pulse radiation energy at room temperature[J]. Laser Physics Letters, 2016, 13(1): 015002. doi: 10.1088/1612-2011/13/1/015002
    [35] FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B, et al. Room-temperature laser on a ZnSe:Fe2+ polycrystal with undoped faces, excited by an electrodischarge HF laser[J]. Laser Physics Letters, 2016, 13(5): 055002. doi: 10.1088/1612-2011/13/5/055002
    [36] FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B, et al. CVD-grown Fe2+:ZnSe polycrystals for laser applications[J]. Laser Physics Letters, 2017, 14(5): 055805. doi: 10.1088/1612-202X/aa66fb
    [37] FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B, et al. High-energy room-temperature Fe2+:ZnS laser[J]. Laser Physics Letters, 2016, 13(1): 015001. doi: 10.1088/1612-2011/13/1/015001
    [38] FIRSOV K N, GAVRISHCHUK E M, KAZANTSEV S Y, et al. Increasing the radiation energy of ZnSe:Fe2+ laser at room temperature[J]. Laser Physics Letters, 2014, 11(8): 085001. doi: 10.1088/1612-2011/11/8/085001
    [39] FIRSOV K N, GAVRISHCHUK E M, KAZANTSEV S Y, et al. Spectral and temporal characteristics of a ZnSe:Fe2+ laser pumped by a non-chain HF(DF) laser at room temperature[J]. Laser Physics Letters, 2014, 11(12): 125004. doi: 10.1088/1612-2011/11/12/125004
    [40] FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I, et al.. Efficient 10-J pulsed Fe:ZnSe laser at 4100 nm[C]. Proceedings of 2016 International Conference Laser Optics, IEEE, 2016.
    [41] FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I, et al. Study of a 2-J pulsed Fe:ZnSe 4- μm laser[J]. Laser Physics Letters, 2013, 10(12): 125001. doi: 10.1088/1612-2011/10/12/125001
    [42] GALLIAN A, FEDOROV V V, MIROV S B, et al. Hot-pressed ceramic Cr2+:ZnSe gain-switched laser[J]. Optics Express, 2006, 14(24): 11694-11701. doi: 10.1364/OE.14.011694
    [43] MIROV S B, FEDOROV V V, MOSKALEV I S, et al. Recent progress in transition-metal-doped II–VI Mid-IR lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 810-822. doi: 10.1109/JSTQE.2007.896634
    [44] EVANS J W, BERRY P A, SCHEPLER K L. 840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm[J]. Optics Letters, 2012, 37(23): 5021-5023. doi: 10.1364/OL.37.005021
    [45] MIROV S, FEDOROV V, MARTYSHKIN D, et al.. High average power Fe: ZnSe and Cr:ZnSe Mid-IR Solid state lasers[C]. Proceedings of Advanced Solid State Lasers 2015, Optical Society of America, 2015.
    [46] VORONOV A A, KOZLOVSKII V I, KOROSTELIN Y V, et al. Laser parameters of a Fe:ZnSe crystal in the 85-255-K temperature range[J]. Quantum Electronics, 2007, 35(9): 809-812.
    [47] LI Y Y, DAI T Y, DUAN X M, et al. Fe:ZnSe laser pumped by a 2.93- μm Cr, Er: YAG laser[J]. Chinese Physics B, 2019, 28(6): 64203. doi: 10.1088/1674-1056/28/6/064203
    [48] AKIMOV V A, VORONOV A A, KOZLOVSKII V I, et al. Efficient lasing in a Fe2+:ZnSe crystal at room temperature[J]. Quantum Electronics, 2006, 36(4): 299-301. doi: 10.1070/QE2006v036n04ABEH013139
    [49] DOROSHENKO M E, JELÍNKOVÁ H, KORANDA P, et al. Tunable mid-infrared laser properties of Cr2+:ZnMgSe and Fe2+:ZnSe crystals[J]. Laser Physics Letters, 2010, 7(1): 38-45. doi: 10.1002/lapl.200910111
    [50] MYOUNG N, MARTYSHKIN D V, FEDOROV V V, et al. Energy scaling of 4.3 μm room temperature Fe: ZnSe laser[J]. Optics Letters, 2011, 36(1): 94-96. doi: 10.1364/OL.36.000094
    [51] FEDOROV V V, MARTYSHKIN D V, MIROV M, et al.. High energy 4.1−4.6 μm Fe:ZnSe laser[C]. Proceedings of Science and Innovations 2012, Optical Society of America, 2012.
    [52] VELIKANOV S D, DANILOV V P, ZAKHAROV N G, et al. Fe2+:ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature[J]. Quantum Electronics, 2014, 44(2): 141-144. doi: 10.1070/QE2014v044n02ABEH015341
    [53] MARTYSHKIN D V, FEDOROV V V, MIROV M, et al.. High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8−4.2 µm[C]. Proceedings of the Science and Innovations 2015, Optical Society of America, 2015.
    [54] VELIKANOV S D, ZARETSKY N A, ZOTOV E A, et al. Room-temperature 1.2-J Fe2+:ZnSe laser[J]. Quantum Electronics, 2016, 46(1): 11-12. doi: 10.1070/QE2016v046n01ABEH015940
    [55] LI Y Y, YANG K, LIU G Y, et al. 1 kHz nanosecond-pulsed room temperature Fe:ZnSe laser gain-switched by a ZnGeP2 optical parametric oscillator[J]. Chinese Optics Letters, 2019, 17(8): 081404. doi: 10.3788/COL201917.081404
    [56] LI Y Y, JU Y L, DAI T Y, et al. A gain-switched Fe:ZnSe laser pumped by a pulsed Ho, Pr: LLF laser[J]. Chinese Physics Letters, 2019, 36(4): 044201. doi: 10.1088/0256-307X/36/4/044201
    [57] UEHARA H, TSUNAI T, HAN B, et al. 40 kHz, 20 ns acousto-optically Q-switched 4 μm Fe:ZnSe laser pumped by a fluoride fiber laser[J]. Optics Letters, 2020, 45(10): 2788-2791. doi: 10.1364/OL.391365
    [58] PAN Q K, XIE J J, CHEN F, et al. Transversal parasitic oscillation suppression in high gain pulsed Fe2+:ZnSe laser at room temperature[J]. Optics &Laser Technology, 2020, 127: 106151.
    [59] FEDOROV V V, MARTYSHKIN D, KARKI K, et al. Q-switched and gain-switched Fe:ZnSe lasers tunable over 3.60-5.15 µm[J]. Optics Express, 2019, 27(10): 13934-13941. doi: 10.1364/OE.27.013934
    [60] EVANS J W, BERRY P A, SCHEPLER K L. A passively Q-switched, CW-pumped Fe:ZnSe laser[J]. IEEE Journal of Quantum Electronics, 2014, 50(3): 204-209. doi: 10.1109/JQE.2014.2302233
    [61] PUSHKIN A V, MIGAL E A, TOKITA S, et al. Femtosecond graphene mode-locked Fe:ZnSe laser at 4.4 µm[J]. Optics Letters, 2020, 45(3): 738-741. doi: 10.1364/OL.384300
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2573
  • HTML全文浏览量:  812
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 修回日期:  2020-11-09
  • 网络出版日期:  2021-02-05
  • 刊出日期:  2021-05-14

目录

    /

    返回文章
    返回