留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光掩星吸收光谱的二氧化碳探测技术

王玉诏 陶宇亮 孙海清 杨超

王玉诏, 陶宇亮, 孙海清, 杨超. 基于激光掩星吸收光谱的二氧化碳探测技术[J]. 中国光学. doi: 10.37188/CO.2020-0201
引用本文: 王玉诏, 陶宇亮, 孙海清, 杨超. 基于激光掩星吸收光谱的二氧化碳探测技术[J]. 中国光学. doi: 10.37188/CO.2020-0201
WANG Yu-Zhao, TAO Yu-Liang, SUN Hai-Qing, YANG Chao. Carbon dioxide detection technology based on the laser occultation absorption spectrum[J]. Chinese Optics. doi: 10.37188/CO.2020-0201
Citation: WANG Yu-Zhao, TAO Yu-Liang, SUN Hai-Qing, YANG Chao. Carbon dioxide detection technology based on the laser occultation absorption spectrum[J]. Chinese Optics. doi: 10.37188/CO.2020-0201

基于激光掩星吸收光谱的二氧化碳探测技术

doi: 10.37188/CO.2020-0201
基金项目: 民用航天十三五预研项目资助(No. D040105)
详细信息
    作者简介:

    王玉诏(1984—),男,河北南宫人,博士,高级工程师,2011年获得北京理工大学工学博士学位,主要研究领域为激光雷达、激光遥感. E-mail:zz0525wyz@163.com

  • 中图分类号: P407.5, P412.27

Carbon dioxide detection technology based on the laser occultation absorption spectrum

Funds: Supported by Civil aerospace 13 th Five-Year Pre-research Project (No. D040105)
More Information
  • 摘要: 本文分析了固定波长激光掩星差分吸收技术的优点和不足,介绍了可调谐激光直接吸收光谱技术测量原理。分析了最优波长透过率与信噪比关系以及测量误差与背景光干扰的关系。根据高灵敏度探测器的工作波长范围,选择了6310.915 cm−1、6310.893 cm−1、6310.890 cm−1、6310.8834 cm−1作为吸收的工作波长,同时选择了6310.15 cm−1作为参考波长,并对各波长的探测能力进行了仿真分析。通过仿真可知,1 km垂直分辨率条件下,在5~35 km范围CO2浓度探测误差优于0.9%,7~42 km范围内的探测误差优于0.4%。该技术降低了系统成本和复杂度,有益于星载产品的设计和实现。
  • 图  1  直接吸收光谱激光掩星探测原理

    Figure  1.  Laser occultation principle of direct absorption spectroscopy

    图  2  信噪比与透过率关系

    Figure  2.  The relationship of SNR and transmission T.

    图  3  CO2光谱与背景光谱对比

    (波数ν范围5882 cm−1~7143 cm−1,高度5 km,(a)为背景光谱,(b)为CO2光谱)

    Figure  3.  Comparison of CO2 spectrum and background spectrum

    (The range of wave number ν is 5882 cm−1~7143 cm−1 and the height is 5 km. (a) shows the background spectrum and (b) shows the CO2 spectrum)

    图  4  背景光谱干扰误差

    (工作波长λon 分别为6310.915 cm−1 @5~10 km、6310.893 cm−1 @11~18 km、6310.890 cm−1 @19~26 km、6310.8834 cm−1 @27−39 km,参考波长λoff为6310.15 cm−1

    Figure  4.  Error caused by background spectral interference

    (λon is 6310.915 cm−1 @ 5~10 km, 6310.893 cm−1 @ 11~18 km, 6310.890 cm−1 @ 19~26 km, 6310.8834 cm−1 @ 27−39 km, and λoff is 6310.15 cm−1)

    图  5  探测信噪比仿真结果

    Figure  5.  Simulation results of detection SNR

    图  6  累积次数的高度分布

    (垂直分辨率分别为0.25 km、0.5 km和1 km)

    Figure  6.  Height distribution of cumulative times

    (Vertical resolutions are 0.25 km, 0.5 km and 1 km respectively)

    图  7  探测误差随高度分布

    (垂直分辨率分别为0.25 km、0.5 km和1 km)

    Figure  7.  Distribution of detection error with height

    (vertical resolution is 0.25 km, 0.5 km and 1 km respectively)

    表  1  系统仿真参数

    Table  1.   System simulation parameters

    System parameterValueUnit
    Orbit altitude of laser transmitter500km
    Orbit altitude of laser receiver600km
    repetition rate40Hz
    Laser power1W
    Laser wavenumer6309.8834~6311.8834cm−1
    Absorption wavenumber6310.915@5~10 km, 6310.893@11~18 km,
    6310.890@19~26 km, 6310.8834 @27-39 km
    cm−1
    Reference wavenumber6310.15cm−1
    Laser line width10MHz
    Laser beam divergence0.3mrad
    Telescope diameter0.3m
    System optical efficiency0.51
    Detector responsivity (InGaAs-APD,
    C30662, 1584.6 nm)
    10.3A/W
    Nominal gain101
    Noise factor5.51
    Dark current45nA
    Spectral Noise Current0.7pA/rt (Hz)
    Bandwidth3000Hz
    下载: 导出CSV
  • [1] IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability[M]. Cambridge: Cambridge University Press, 2014.
    [2] 熊伟. 高分五号卫星大气主要温室气体监测仪优化设计及数据分析[J]. 上海航天,2019,36(S2):167-172.

    XIONG W. Optimum design and data analysis of greenhouse gases monitoring instrument on GF-5satellite[J]. Aerospace Shanghai, 2019, 36(S2): 167-172. (in Chinese)
    [3] FRANKENBERG C, POLLOCK R, LEE R A M, et al. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements[J]. Atmospheric Measurement Techniques, 2015, 8(1): 301-313. doi: 10.5194/amt-8-301-2015
    [4] 谢杨易, 刘继桥, 姜佳欣, 等. 使CO2浓度测量误差减小的星载激光雷达波长优化[J]. 红外与激光工程,2014,43(1):88-93. doi: 10.3969/j.issn.1007-2276.2014.01.015

    XIE Y Y, LIU J Q, JIANG J X, et al. Wavelengths optimization to decrease error for a space-borne lidar measuring CO2 concentration[J]. Infrared and Laser Engineering, 2014, 43(1): 88-93. (in Chinese) doi: 10.3969/j.issn.1007-2276.2014.01.015
    [5] 宗雪梅. 大气红外辐射超高光谱探测仪临边探测—污染气体的反演精度和光谱通道评估[J]. 环境科学学报,2020,40(4):1410-1421.

    ZONG X M. Inversion accuracy and spectral channel evaluation of atmospheric polluted gases of atmospheric infrared radiation ultra-high detector under limb sounding[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1410-1421. (in Chinese)
    [6] 王雅鹏, 李小英, 陈良富, 等. 红外临边探测发展现状[J]. 遥感学报,2016,20(4):513-527.

    WANG Y P, LI X Y, CHEN L F, et al. Overview of infrared limb sounding[J]. Journal of Remote Sensing, 2016, 20(4): 513-527. (in Chinese)
    [7] KIRCHENGAST G, et al.. ACCURATE-Climate benchmark profiling of greenhouse gases and thermo-dynamic variables and wind from space, ESA Earth Explorer Opportunity Mission EE8 Proposal, Scientific Report 36-2010[R]. Graz, Austria: Wegener Center Verlag, 2010. (查阅所有网上资料, 未找到本条文献信息, 请联系作者确认)
    [8] 李文冬, 刘继桥, 朱亚丹, 等. LEO-LEO红外激光掩星CO2浓度测量技术研究[J]. 中国激光,2019,46(8):0810001. doi: 10.3788/CJL201946.0810001

    LI W D, LIU J Q, ZHU Y D, et al. LEO-LEO Infrared laser occultation technique to measure atmospheric carbon dioxide concentration[J]. Chinese Journal of Lasers, 2019, 46(8): 0810001. (in Chinese) doi: 10.3788/CJL201946.0810001
    [9] MOTTINI S, LOESCHER A, AGUIRRE M. A new approach to climatology from space: laser occultation[J]. Proceedings of SPIE, 2010, 10565: 1056565.
    [10] 苏俊宏, 尚小燕, 弥谦. 光电技术基础[M]. 北京: 国防工业出版社, 2011.

    SU J H, SHANG X Y, MI Q. Fundamentals of Photoelectric Technology[M]. Beijing: National Defense Industry Press, 2011. (in Chinese)(查阅所有网上资料, 未找到对应的英文翻译, 请联系作者确认)
    [11] 王玉诏, 陶宇亮, 杨超, 等. 一种基于可调谐激光的掩星大气密度廓线测量系统及方法: 中国, 201911032531.8[P]. 2019-10-28.

    WANG Y ZH, TAO Y L, YANG CH, et al.. Occultation atmospheric density profile measurement system and method based on tunable laser: CN, 201911032531.8[P]. 2019-10-28. (in Chinese)
    [12] C30659 Series-900/1060/1550/1550E[R]. Excelitas Technologies, 2012. (查阅所有网上资料, 未能确认文献类型, 请联系作者确认)
    [13] WERLE P. Tunable diode laser absorption spectroscopy: recent findings and novel approaches[J]. Infrared Physics &Technology, 1996, 37(l): 59-66.
    [14] 屈东胜, 洪延姬, 王广宇, 等. 基于波长调制光谱的多参数测量方法研究[J]. 红外与毫米波学报,2016,35(4):470-476. doi: 10.11972/j.issn.1001-9014.2016.04.015

    QU D SH, HONG Y J, WANG G Y, et al. Measurement of multi-parameters of gas based on the wavelength modulation spectroscopy[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 470-476. (in Chinese) doi: 10.11972/j.issn.1001-9014.2016.04.015
    [15] 王玉诏. 基于matlab的激光掩星大气探测仿真系统[C]. 第三十一届全国空间探测学术研讨会. 银川: 中国空间科学学会, 2018: 47-55. (查阅所有网上资料, 未找到本条文献信息, 请联系作者确认)

    WANG Y ZH. Laser occultation detection simulation system based on matlab[C]. The 31th National Conference on Space Exploration. Yinchuan: Chinese Society of Space Research, 2018. (in Chinese)
    [16] 饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2012.

    RAO R ZH. Modern Atmospheric Optics[M]. Beijing: Science Press, 2012. (in Chinese)(查阅所有网上资料, 未找到对应的英文翻译, 请联系作者确认)
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-27

目录

    /

    返回文章
    返回