留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3.2~3.8 μm和4.9~5.4 μm红外双色滤光片的研制

周晟 王凯旋 刘定权 胡金超 李耀鹏 王曙光

周晟, 王凯旋, 刘定权, 胡金超, 李耀鹏, 王曙光. 3.2~3.8 μm和4.9~5.4 μm红外双色滤光片的研制[J]. 中国光学. doi: 10.37188/CO.2020-0206
引用本文: 周晟, 王凯旋, 刘定权, 胡金超, 李耀鹏, 王曙光. 3.2~3.8 μm和4.9~5.4 μm红外双色滤光片的研制[J]. 中国光学. doi: 10.37188/CO.2020-0206
ZHOU Sheng, WANG Kai-xuan, LIU Ding-quan, HU Jin-chao, LI Yao-peng, WANG Shu-guang. Research on infrared dual-color filters with 3.2~3.8 μm and 4.9~5.4 μm bands[J]. Chinese Optics. doi: 10.37188/CO.2020-0206
Citation: ZHOU Sheng, WANG Kai-xuan, LIU Ding-quan, HU Jin-chao, LI Yao-peng, WANG Shu-guang. Research on infrared dual-color filters with 3.2~3.8 μm and 4.9~5.4 μm bands[J]. Chinese Optics. doi: 10.37188/CO.2020-0206

3.2~3.8 μm和4.9~5.4 μm红外双色滤光片的研制

doi: 10.37188/CO.2020-0206
基金项目: 国家自然科学基金(No. 61705248)
详细信息
    作者简介:

    周晟:周 晟(1988—),男,江苏无锡人,副研究员,硕士,2009年于上海理工大学光电信息工程系获得学士学位,2012年于上海理工大学光学工程系获得硕士学位,主要从事光学薄膜材料和器件的研究。E-mail:zhousheng@sitp.ac.cn

    刘定权(1964—),男,陕西固城人,博士,研究员,1986年于西安交通大学电子工程系获得学士学位,1989年于中国空间技术研究院获得理学硕士学位,2009年于中国科学院研究生院获得工学博士学位。主要从事光学薄膜材料和器件的研究。E-mail:dqliu@mail.sitp.ac.c

  • 中图分类号: O484

Research on infrared dual-color filters with 3.2~3.8 μm and 4.9~5.4 μm bands

Funds: The National Natural Science Fund (No. 61705248)
More Information
  • 摘要: 双色滤光片在其任意一个几何位置上,均能够有效透过两个精确控制的光谱通道,它可以提升光学探测装置对目标的识别能力。本文选用单晶Ge作为基片,Ge和ZnSe分别作为高低折射率膜层材料,研制了一种包含3.2~3.8 μm(通道1)和4.9~5.4 μm(通道2)两个通道的红外双色滤光片。在高真空中以热蒸发的方式镀制了滤光片的光学膜层,采用单波长的极值百分比光学监控(POEM)方法控制膜层的光学厚度。在100 K低温下,通道1的平均透射率为94.2%,顶部波纹幅度为5.7%;通道2的平均透射率为96.5%,顶部波纹幅度为0.6%。在两个通道之间(4.0~4.7 μm)的截止区域内,平均透射率小于0.16%。该红外双色滤光片具有良好的光学稳定性,有利于高速运动目标的识别。
  • 图  1  两个单F-P带通膜系组合而成的双色滤光片

    Figure  1.  Dual-color filter composed of two single F-P band-pass filters

    图  2  负滤光膜系和宽带通膜系组合而成的双色滤光片

    Figure  2.  Dual-color filter composed of a notch filter and a wide band-pass filter

    图  3  设计的含有短波截止膜系的负滤光膜系透射曲线

    Figure  3.  Transmittance curve of negative filter film with long-pass filter

    图  4  负滤光膜系各层薄膜在0.1 qw(1/4波长)光学厚度误差时顶部波纹振幅的变化

    Figure  4.  The top ripple amplitude variation of each layer of a notch filter that has an optical thickness error of 0.1 qw (1/4波长)

    图  5  设计的长波截止膜系透射光谱曲线

    Figure  5.  Transmittance curve of the designed short-pass filter

    图  6  设计的双色滤光片透射光谱曲线

    Figure  6.  Transmittance curve of the designed dual-color filter

    图  7  负滤光膜系的单波长(2110 nm)直接监控设计曲线

    Figure  7.  Designed curve of 2110 nm single-wavelength direct monitoring of the notch filter

    图  8  长波截止膜的单波长(2026 nm)直接监控设计曲线

    Figure  8.  Designed curve of 2026 nm single-wavelength direct monitoring of the short-pass filter

    图  9  Ge片上单面镀制的负滤光膜和长波截止膜的测量光谱

    Figure  9.  Measured spectra of the notch filter and the short-pass filter coatings both on one side of Ge substrate

    图  10  双色滤光片测量光谱

    Figure  10.  Measured spectrum of the dual-color filter

    图  11  双色滤光片在300 K和100 K温度下的透射光谱

    Figure  11.  Spectra of dual-color filter at 300 K and 100 K temperatures

    图  12  300 K和100 K温度下,Ge单层膜的透射光谱

    Figure  12.  Transmittance spectra of the Ge single film on Al2O3 at 300 K and 100 K temperatures

    图  13  300 K和100 K温度下,ZnSe单层膜的透射光谱

    Figure  13.  Transmittance spectra of ZnSe single film on Al2O3 at 300 K and 100 K temperatures

    图  14  300 K和100 K温度下,Ge单层膜的折射率色散曲线

    Figure  14.  Refractive index dispersion curves of the Ge single film on Al2O3 at 300 K and 100 K temperatures

    图  15  300 K和100 K温度下,ZnSe单层膜的折射率色散曲线

    Figure  15.  Refractive index dispersion curves of ZnSe single film on Al2O3 at 300 K and 100 K temperatures

    表  1  Ge和ZnSe薄膜沉积工艺参数

    Table  1.   Deposition parameters of the Ge and ZnSe films

    deposition rate
    (nm/s)
    chamber pressure
    (10−4 Pa)
    rotation rate
    (rad/min)
    Ge layers0.65~830
    ZnSe layers25~830
    下载: 导出CSV

    表  2  两个通带的边缘陡度和顶部波纹振幅

    Table  2.   Edge steepness and top ripple amplitudes of the two channels

    Edge steepness
    of the left side
    Edge steepness
    of the right side
    Top ripple
    amplitude
    Channel 1 (3.2~3.8 μm)3.5%2.1%5.7%
    Channel 2 (4.9~5.4 μm)2.7%2.2%0.6%
    下载: 导出CSV

    表  3  温度由300 K变化至100 K时两个通带半峰波长位置的移动情况

    Table  3.   Half-peak wavelength point shift of the two channels when the temperature changes from 300 K to 100 K (nm)

    Left side T0.5P
    wavelength point shift
    Right side T0.5P
    wavelength point shift
    Channel 1
    (3.2~3.8 μm)
    −43−49
    Channel 2
    (4.9~5.4 μm)
    −67−73
    下载: 导出CSV
  • [1] LI P, CAI Q, ZHANG J G, et al. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter[J]. Optics Express, 2019, 27(13): 17859-17867. doi: 10.1364/OE.27.017859
    [2] 李宏光, 杨鸿儒, 薛战理, 等. 窄带光谱滤光法探测低温黑体太赫兹辐射[J]. 光学 精密工程,2013,21(6):1410-1416. doi: 10.3788/OPE.20132106.1410

    LI H G, YANG H R, XUE ZH L, et al. Terahertz radiation detection of low temperature blackbody based on narrowband spectral filter method[J]. Optics and Precision Engineering, 2013, 21(6): 1410-1416. (in Chinese) doi: 10.3788/OPE.20132106.1410
    [3] INOUE Y, HAMADA T, HASEGAWA M, et al. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters[J]. Applied Optics, 2016, 55(34): D22-D28. doi: 10.1364/AO.55.000D22
    [4] 乔铁英, 蔡立华, 李宁, 等. 基于红外辐射特性系统实现对面目标测量[J]. 中国光学,2018,11(5):804-811. doi: 10.3788/co.20181105.0804

    QIAO T Y, CAI L H, LI N, et al. Opposite target measurement based on infrared radiation characteristic system[J]. Chinese Optics, 2018, 11(5): 804-811. (in Chinese) doi: 10.3788/co.20181105.0804
    [5] NOULKOW N, TAUBERT R D, MEINDL P, et al. Infrared filter radiometers for thermodynamic temperature determination below 660 °C[J]. International Journal of Thermophysics, 2009, 30(1): 131-143. doi: 10.1007/s10765-008-0458-1
    [6] 朱旭波, 彭震宇, 曹先存, 等. InAs/GaSb二类超晶格中/短波双色红外焦平面探测器[J]. 红外与激光工程,2019,48(11):1104001. doi: 10.3788/IRLA201948.1104001

    ZHU X B, PENG ZH Y, CAO X C, et al. Mid-/short-wavelength dual-color infrared focal plane arrays based on type-II InAs/GaSb superlattice[J]. Infrared and Laser Engineering, 2019, 48(11): 1104001. (in Chinese) doi: 10.3788/IRLA201948.1104001
    [7] JEONG M Y, MANG J Y. Continuously tunable optical notch filter and band-pass filter systems that cover the visible to near-infrared spectral ranges[J]. Applied Optics, 2018, 57(8): 1962-1966. doi: 10.1364/AO.57.001962
    [8] TIKHONRAVOV A V, TRUBETSKOV M K, DEBELL G W. Application of the needle optimization technique to the design of optical coatings[J]. Applied Optics, 1996, 35(28): 5493-5508. doi: 10.1364/AO.35.005493
    [9] WANG Y Z, LIU D Q, ZHANG F SH. Design and fabrication of bi-color multilayer filters for mid- and far- infrared application[J]. Proceedings of SPIE, 2005, 5640: 42-48. doi: 10.1117/12.572842
    [10] 蔡渊, 周晟, 刘定权. 基于组合Fabry-Perot膜系的中波红外双色滤光片设计[J]. 光学学报,2016,36(2):0222004. doi: 10.3788/AOS201636.0222004

    CAI Y, ZHOU SH, LIU D Q. Design of dual-band-pass optical filter based on combination of fabry-perot coatings in mid-infrared band[J]. Acta Optica Sinica, 2016, 36(2): 0222004. (in Chinese) doi: 10.3788/AOS201636.0222004
    [11] WILLEY R R. Simulation comparisons of monitoring strategies in narrow bandpass filters and antireflection coatings[J]. Applied Optics, 2014, 53(4): A27-A34. doi: 10.1364/AO.53.000A27
    [12] JANFAZA M, MANSOURI-BIRJANDI M A, TAVOUSI A. Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on Bragg gratings[J]. Optics Communications, 2019, 440: 75-82. doi: 10.1016/j.optcom.2019.01.062
    [13] STOLBERG-ROHR T, HAWKINS G J. Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared[J]. Optics Express, 2015, 23(1): 580-596. doi: 10.1364/OE.23.000580
    [14] NOULKOW N, TAUBERT RD, MEINDL P, et al.. High-accuracy thermodynamic temperature measurements with near infrared filter radiometers[C]. Proceedings of the 10th International Conference on Infrared Sensors & Systems, Numberg, 2008: 219-224.
    [15] 申振峰. 特定折射率材料及光学薄膜制备[J]. 中国光学,2013,6(6):900-905.

    SHEN ZH F. Preparation of specific refractive index material and optical thin films[J]. Chinese Optics, 2013, 6(6): 900-905. (in Chinese)
    [16] LEMKE D, BÖHM A, DE BONIS F, et al. Cryogenic filter- and spectrometer wheels for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST)[J]. Proceedings of SPIE, 2006, 6273: 627324. doi: 10.1117/12.671230
    [17] INOUE Y, MATSUMURA T, HAZUMI M, et al. Cryogenic infrared filter made of alumina for use at millimeter wavelength[J]. Applied Optics, 2014, 53(9): 1727-1733. doi: 10.1364/AO.53.001727
    [18] HOU H G, HUSSAIN S, SHAO H CH, et al. Experimental insights on factors influencing sensitivity of thin film narrow band-pass filters[J]. Journal of Nanoelectronics and Optoelectronics, 2019, 14(11): 1548-1554. doi: 10.1166/jno.2019.2663
    [19] 白胜元, 顾培夫, 刘旭, 等. 薄膜滤光片的光学稳定性研究[J]. 光子学报,2001,30(5):576-580.

    BAI SH Y, GU P F, LIU X, et al. Optical stability of thin film filters[J]. Acta Photonica Sinica, 2001, 30(5): 576-580. (in Chinese)
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  15
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 修回日期:  2020-12-18
  • 网络出版日期:  2021-02-05

目录

    /

    返回文章
    返回