留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A thermal dissipation design method for LED array structure illumination

WU Fu-pei XIE Xiao-yang LI Sheng-ping

吴福培, 谢晓扬, 李昇平. 一种散热型发光二极管阵列结构光源设计方法[J]. 中国光学(中英文), 2021, 14(3): 670-684. doi: 10.37188/CO.2020-0211
引用本文: 吴福培, 谢晓扬, 李昇平. 一种散热型发光二极管阵列结构光源设计方法[J]. 中国光学(中英文), 2021, 14(3): 670-684. doi: 10.37188/CO.2020-0211
WU Fu-pei, XIE Xiao-yang, LI Sheng-ping. A thermal dissipation design method for LED array structure illumination[J]. Chinese Optics, 2021, 14(3): 670-684. doi: 10.37188/CO.2020-0211
Citation: WU Fu-pei, XIE Xiao-yang, LI Sheng-ping. A thermal dissipation design method for LED array structure illumination[J]. Chinese Optics, 2021, 14(3): 670-684. doi: 10.37188/CO.2020-0211

一种散热型发光二极管阵列结构光源设计方法

详细信息
  • 中图分类号: TM923.34

A thermal dissipation design method for LED array structure illumination

doi: 10.37188/CO.2020-0211
Funds: Supported by National Natural Science Foundation of China (No. 61573233); Natural Science Foundation of Guangdong, China (No. 2021A1515010661; No. 2018A0303130188); Guangdong Science and Technology Special Funds Project (No. 190805145540361); Special Projects in Key Fields of Colleges and Universities in Guangdong Province (No. 2020ZDZX2005)
More Information
    Author Bio:

    WU Fu-pei (1980—), male, was born in Yulin, Guangxi province. He received the Ph.D. in mechanical engineering from South China University of Technology, Guangzhou, China, in 2009, and now he works in Department of Mechanical Engineering as an associate professor, Shantou University, Shantou, China. His research interests include illumination design, automated optical inspection, and machine vision. E-mail: fpwu@stu.edu.cn

    LI Sheng-ping (1966—), male, was born in Yongzhou, Hunan province. He received a bachelor's degree from Wuhan University of Technology in 1987, a master's degree from Beijing University of Technology in 1992 and a doctorate from Huazhong University of Science and Technology in 1995. He is now a professor at Shantou University. His main research fields are adaptive control, robust control, robust design theory and application, machine vision. E-mail: spli@stu.edu.cn. Corresponding author

    Corresponding author: spli@stu.edu.cn
  • 摘要: 在主动式自动光学检测系统中,获取高质量的图像具有重要意义。除相机外,光源热稳定性对获取的图像质量也会产生重要影响。为了确保光学检测系统光源的热稳定性以获取高质量的图像,论文提出了一种散热型LED阵列结构光源设计方法。首先,基于单个LED热阻特性建立单个LED的热阻模型。其次,以两个相邻的LED为例,分析同色光LED在单一阵列中的结温特性,并建立LED阵列结构光源的结温模型。最后,基于建立的结温模型,提出散热型LED阵列结构光源设计方法。特别地,论文提出了将散热型结构光源设计问题分解为两个相对简单子问题的方法,进而简化结构光源设计过程。实验结果表明,该设计方法的仿真结温偏差在−0.33%~0.33%之间,实验结温偏差为2.28%,验证了该方法的有效性。

     

  • Figure 1.  The 3D model of a single LED

    Figure 2.  Surface temperature distribution of a single LED model

    Figure 3.  Simulation results of the model with two adjacent LEDs

    Figure 4.  The model of LED ring structure illumination

    Figure 5.  Top view for the zeroth layer LED array of ring illumination

    Figure 6.  The thermal dissipation design process of multi-layer LED arrays

    Figure 7.  The 3D model of strip-type structure illumination

    Figure 8.  The thermal model of strip-type structure illumination

    Figure 9.  The details of one LED in strip-type structure illumination

    Figure 10.  The 3D model of ring structure illumination

    Figure 11.  The thermal model of ring structure illumination

    Figure 12.  The details of one LED in ring structure illumination

    Figure 13.  The zeroth layer lighting of the LED array ring structure illumination

    Table  1.   Thermal conductivity of LED packaging material

    Structural assemblyThermal conductivity (W·m−1·K−1)
    Chip130
    Reflector155
    Bracket and pin73
    External encapsulation0.2
    Substrate0.8
    下载: 导出CSV

    Table  2.   LED’s working parameters

    ParametersValues
    $ {h}_{a} $$10\;{\rm{W} }/({ {\rm{m} } }^{2}\cdot {\rm{K} })$
    ${T}_{{\rm{sur}}}$27 ℃
    $ P $$0.022\;8\;{\rm{W}}$
    ${P}_{{\rm{th}}}$$0.018\;24\;{\rm{W}}$
    $ V $$9.439\times {10}^{-12}\;{{\rm{m}}}^{3}$
    $ H $$1\;932\;418\;560\;{\rm{W}}/{{\rm{m}}}^{3}$
    下载: 导出CSV

    Table  3.   Surface temperatures of a single LED model in experiments

    GroupMaximum temperature (°C)Minimum temperature (°C)
    Group 140.9039.70
    Group 239.8038.50
    Group 338.5037.60
    The average39.7338.60
    下载: 导出CSV

    Table  4.   Average temperature of the LED surface with different center distances in simulations

    Center distance/mm4.04.24.44.64.85.05.25.45.65.86.0
    Average temperature/℃40.4240.0839.6539.2838.7538.4038.0337.6337.3537.2636.79
    下载: 导出CSV

    Table  5.   The measurement and analysis of LEDs surface temperatures

    GroupsLEDsMinimum temperature
    from experiments/°C
    Maximum temperature
    from experiments/°C
    Average surface temperature
    from experiments/°C
    Temperature obtained
    by fitting equation/°C
    Fitting error
    Group 1LED137.2038.5038.0538.461.08%
    LED237.1039.40
    Group 2LED336.5038.0037.4538.462.70%
    LED437.0038.30
    Group 3LED536.6038.1037.8038.461.75%
    LED637.2039.30
    下载: 导出CSV

    Table  6.   Junction temperature properties of three and four adjacent LEDs

    Center distance/mmThree LEDsFour LEDs
    Temperature obtained
    by fitting equation/°C
    Temperature from
    simulation/°C
    Fitting errorTemperature obtained
    by fitting equation/°C
    Temperature from
    simulation/°C
    Fitting error
    4.242.8844.253.10%42.8844.543.73%
    4.642.1743.222.43%42.1743.452.95%
    5.041.4742.261.87%41.4742.512.45%
    5.440.7641.491.76%40.7641.702.25%
    5.840.0640.711.60%40.0640.922.10%
    下载: 导出CSV

    Table  7.   The number of LEDs in each layer array for ring structure illumination

    The $ i $th layer arrayNumber of LEDs
    018
    122
    226
    330
    434
    下载: 导出CSV
  • [1] SUN X H, GU J A, TANG SH X, et al. Research progress of visual inspection technology of steel products-a review[J]. Applied Sciences, 2018, 8(11): 2195. doi: 10.3390/app8112195
    [2] WU F P, LI SH P, ZHANG X M, et al. A design method for LEDs arrays structure illumination[J]. Journal of Display Technology, 2016, 12(10): 1177-1184. doi: 10.1109/JDT.2016.2593770
    [3] WU X J, GAO G M. LED light design method for high contrast and uniform illumination imaging in machine vision[J]. Applied Optics, 2018, 57(7): 1694-1704. doi: 10.1364/AO.57.001694
    [4] QU X H, LIU Q, WANG H, et al. System-level lifetime prediction for LED lighting applications considering thermal coupling between LED sources and drivers[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(4): 1860-1870. doi: 10.1109/JESTPE.2018.2850845
    [5] WANG X X, JING L, WANG Y, et al. The influence of junction temperature variation of LED on the lifetime estimation during accelerated aging test[J]. IEEE Access, 2019, 7: 4773-4781. doi: 10.1109/ACCESS.2018.2885578
    [6] HUANG D S, CHEN T C, TSAI L T, et al. Design of fins with a grooved heat pipe for dissipation of heat from high-powered automotive LED headlights[J]. Energy Conversion and Management, 2019, 180: 550-558. doi: 10.1016/j.enconman.2018.11.021
    [7] KIM M Y, KOH K I. Shadow-free moire interferometer with dual projection for in-line inspection of light emitting diodes[J]. International Journal of Optomechatronics, 2007, 1(4): 404-424. doi: 10.1080/15599610701771645
    [8] WU F P, ZHANG X M. An inspection and classification method for chip solder joints using color grads and Boolean rules[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(5): 517-526. doi: 10.1016/j.rcim.2014.03.003
    [9] WU H. Solder joint defect classification based on ensemble learning[J]. Soldering &Surface Mount Technology, 2017, 29(3): 164-170.
    [10] SONG J D, KIM Y G, PARK T H. SMT defect classification by feature extraction region optimization and machine learning[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5-8): 1303-1313. doi: 10.1007/s00170-018-3022-6
    [11] HUANG C H, WANG G J. A design problem to estimate the optimal fin shape of LED lighting heat sinks[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1205-1217. doi: 10.1016/j.ijheatmasstransfer.2016.10.101
    [12] XIANG J H, ZHANG CH L, ZHOU CH, et al. Heat transfer performance testing of a new type of phase change heat sink for high power light emitting diode[J]. Journal of Central South University, 2018, 25(7): 1708-1716. doi: 10.1007/s11771-018-3862-0
    [13] JANG H, LEE J H, BYON C, et al. Innovative analytic and experimental methods for thermal management of SMD-type LED chips[J]. International Journal of Heat and Mass Transfer, 2018, 124: 36-45. doi: 10.1016/j.ijheatmasstransfer.2018.03.055
    [14] MOU Y, WANG H, PENG Y, et al. Enhanced heat dissipation of high-power light-emitting diodes by Cu nanoparticle paste[J]. IEEE Electron Device Letters, 2019, 40(6): 949-952. doi: 10.1109/LED.2019.2912458
    [15] WANG Y W, CEN J W, CAO W J, et al. Thermal performance of direct illumination high-power LED backlight units with different assembling structures[J]. Heat and Mass Transfer, 2017, 53(5): 1619-1630. doi: 10.1007/s00231-016-1925-z
    [16] TIAN CH, GUO SH X, LIANG J Q, et al. Thermal analysis and an improved heat-dissipation structure design for an AlGaInP-LED micro-array device[J]. Optoelectronics Letters, 2017, 13(4): 282-286. doi: 10.1007/s11801-017-7048-z
    [17] BAN ZH, LIANG ZH ZH, LIANG J Q, et al. Thermal analysis and design of AlGaInP-based light emitting diode arrays[J]. Current Optics and Photonics, 2017, 1(2): 143-149. doi: 10.3807/COPP.2017.1.2.143
    [18] BEN ABDELMLEK K, ARAOUD Z, CHARRADA K, et al. Optimization of the thermal distribution of multi-chip LED package[J]. Applied Thermal Engineering, 2017, 126: 653-660. doi: 10.1016/j.applthermaleng.2017.07.136
    [19] Dassault Systèmes SolidWorks Corporation. SOLIDWORKS 2016[CP/DK]. Waltham, USA: Dassault Systèmes SolidWorks Corporation, 2015.
    [20] ANSYS, Incuk. ANSYS 16.0[CP/DK]. Canonsburg, USA: ANSYS, Incuk, 2015.
    [21] XIE L H, CAI S Q. ANSYS Workbench 17.0 Finite Element Analysis and Simulation[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2017. (in Chinese)
    [22] SHE J, YANG W, YU T B, et al. Thermal analysis of LED filaments with three types of chip distributions[J]. Journal of Nanchang University (Engineering &Technology), 2017, 39(3): 289-293, 306. (in Chinese)
    [23] LI Y F, ZOU J. Application of LED Thermal Management and Heat Dissipation Technology[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2018. (in Chinese)
    [24] CHAI G Y, LI B, WANG G, et al.. Thermal Management of LED’s Packaging and Light Engine[M]. Beijing: Tsinghua University Press, 2018. (in Chinese)
    [25] CHEN Y C, WEN SH SH, WU Y X. Thermal analysis for LED chip on board package based on plastic radiator without substrate[J]. Acta Optica Sinica, 2013, 33(8): 0823005. (in Chinese) doi: 10.3788/AOS201333.0823005
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  397
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 修回日期:  2021-01-08
  • 网络出版日期:  2021-03-27
  • 刊出日期:  2021-05-14

目录

    /

    返回文章
    返回