-
摘要: 混沌激光由于其类噪声的随机性和优良的抗干扰性,广泛应用于混沌保密通讯、激光雷达、光学检测等方面,而且半导体激光器自身体积小且结构稳定,成为产生混沌激光的主要激光器之一。但是,常规光反馈结构的半导体激光器系统输出的混沌激光信号带宽较窄且存在延时特征,这严重影响了混沌激光的应用。针对半导体激光器系统的上述问题,本文综合介绍了降低延时特征和优化混沌激光带宽的研究进展,对混沌保密通讯十分重要的混沌激光的同步性研究进展和半导体激光器系统输出的混沌激光在应用方面的研究进行了总结,并最终对半导体激光器系统输出的混沌激光的未来发展与应用前景进行展望。Abstract: Chaotic lasers are widely used in secure communication, lidar, optical detection and other applications due to their noise-like randomness, excellent anti-interference and other advantages. Moreover, as semiconductor lasers have small size, stable structure and other advantages, it has become one of the main lasers to produce optical chaos. However, the chaotic laser output from conventional optical feedback semiconductor lasers has the problems of narrow signal bandwidth and delay characteristics, which seriously affect their applications. With consideration for these problems, a comprehensive introduction to reduce the delay characteristics and optimize the chaotic laser bandwidth are reviewed based on recent literatures. This paper also summarizes the research progresses of chaotic secret communication, which is very important in the synchronization of chaotic lasers. The chaotic output of semiconductor lasers and the applications of chaotic lasers are also summarized, and then their development and potential future applications are discussed.
-
Key words:
- chaotic laser /
- time delay signature /
- synchronization of chaos /
- signal bandwidth
-
图 3 (a)具有光注入的散射反馈半导体激光器系统装置示意图;(b)外腔反馈延迟的相关系数与光纤长度的关系(蓝线),红线表示混沌光信号本身的相关噪底[35]
Figure 3. (a)Schematic diagram of a scattering feedback semiconductor laser system with light injection; (b) correlation coefficient at the external cavity feedback delay as a function of the fiber length, which is represented by the blue line, the red line represents the correlation noise floor of the chaotic light signal itself[35]
图 6 (a)具有时滞的互耦合半导体激光器的模型,τ为光的传播延迟时间;(b) 实线与虚线分别表示激光器1与激光器2成为局部领先者的概率[49]
Figure 6. Model for mutually-coupled semiconductor lasers with a time delay, τ is the propagation delay time of the light; (b) the solid line and the dotted line respectively represent the probability that laser 1 or 2 is locally the leader[49]
表 1 单激光器混沌激光性能优化
Table 1. Optimization of chaos in the laser system
Research institute Parameter Methods for improvement Evaluation function Ecole Supérieured’Electricité τ,kap \ ACF[15], DMI[15] Ecole Supérieured’Electricité τ,kap,J \ ACF[15,], DMI[15] Xidian University kap,τ,kpm electronic component ACF[15], PE[16] City University of Hong Kong Δf,kap change optical feedback structure ACF[15], BW[17] National Tsing Hua University kap signal processing ACF[15], DMI[15] Bangor University J change optical feedback structure BW[17] Université Paris-Saclay kap, τ change optical feedback structure BW[17] Taiyuan University of Technology α \ ACF[15], LPE[19] Changchun University of Science and Technology τ, kap,J,B electronic component ACF[15], BW[17] University of Ottawa kap change optical feedback structure ACF[15] Taiyuan University of Technology kap,J signal processing ACF[15], PE[16] 表 2 多个激光器系统输出混沌激光性能优化
Table 2. Optimization of chaos in systems composed of multiple lasers
Research Institutes Parameters Methods Evaluation functions Information Engineering University J1,J2,Δf,kinj \ ACF[15], DMI[15] Taiyuan University of Technology Δf,kinj \ BW[17] Yantai University kinj,kap,α,ε change feedback structure ACF[15] Taiyuan University of Technology \ change feedback structure ACF[15] University of Electronic Science and Technology kpm electronic component ACF[15], DMI[15] Changchun University of Science and Technology τ,kinj,kap,J,Λ electronic component ACF[15], DMI[15], BW[17] Changchun University of Science and Technology kinj,kap,J, electronic component ACF[15], BW[17] -
[1] MAIMAN T H, HOSKINS R H, D’HAENENS I J, et al. Stimulated optical emission in fluorescent solids. Ⅱ. Spectroscopy and stimulated emission in ruby[J]. Physical Review, 1961, 123(4): 1151-1157. doi: 10.1103/PhysRev.123.1151 [2] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 [3] WEISS C O, GODONE A, OLAFSSON A. Routes to chaotic emission in a cw He-Ne laser[J]. Physical Review A, 1983, 28(2): 892-895. doi: 10.1103/PhysRevA.28.892 [4] MUKAI T, OTSUKA K. New route to optical chaos: Successive-subharmonic-oscil-lation cascade in a semiconductor laser coupled to an external cavity[J]. Physical Review Letters, 1985, 55(17): 1711-1714. doi: 10.1103/PhysRevLett.55.1711 [5] LAVROV R, PEIL M, JACQUOT M, et al. Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization[J]. Physical Review E, 2009, 80(2): 026207. doi: 10.1103/PhysRevE.80.026207 [6] 孙胜明, 范杰, 徐莉, 等. 锥形半导体激光器研究进展[J]. 中国光学,2019,12(1):48-58. doi: 10.3788/co.20191201.0048SUN SH M, FAN J, XU L, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 48-58. (in Chinese) doi: 10.3788/co.20191201.0048 [7] LANG R, KOBAYASHI K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 1980, 16(3): 347-355. doi: 10.1109/JQE.1980.1070479 [8] TKACH R, CHRAPLYVY A. Regimes of feedback effects in 1.5 μm distributed feedback lasers[J]. Journal of Lightwave Technology, 1986, 4(11): 1655-1661. doi: 10.1109/JLT.1986.1074666 [9] SIMPSON T B, LIU J M, GAVRIELIDES A, et al. Period-doubling cascades and chaos in a semiconductor laser with optical injection[J]. Physical Review A, 1995, 51(5): 4181-4185. doi: 10.1103/PhysRevA.51.4181 [10] TANG S, LIU J M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback[J]. IEEE Journal of Quantum Electronics, 2001, 37(3): 329-336. doi: 10.1109/3.910441 [11] ZHANG M J, JI Y N, ZHANG Y N, et al. Remote radar based on chaos generation and radio over fiber[J]. IEEE Photonics Journal, 2014, 6(5): 7902412. [12] ARGYRIS A, SYVRIDIS D, LARGER L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346. doi: 10.1038/nature04275 [13] 吕艺辉, 杨玲珍, 李佳, 等. 混沌激光实现异质物大小和位置的光学检测[J]. 光学技术,2020,46(2):146-151.LV Y H, YANG L ZH, LI J, et al. Optical detection of the size and position of foreign object with chaotic laser[J]. Optical Technique, 2020, 46(2): 146-151. (in Chinese) [14] 乔丽君, 杨强, 柴萌萌, 等. 混沌半导体激光器研究进展[J]. 应用科学学报,2020,38(4):595-611. doi: 10.3969/j.issn.0255-8297.2020.04.006QIAO L J, YANG Q, CHAI M M, et al. Progress in chaotic semiconductor lasers[J]. Journal of Applied Sciences, 2020, 38(4): 595-611. (in Chinese) doi: 10.3969/j.issn.0255-8297.2020.04.006 [15] UDALTSOV V S, LARGER L, GOEDGEBUER J P, et al. Time delay identification in chaotic cryptosystems ruled by delay-differential equations[J]. Journal of Optical Technology, 2005, 72(5): 373-377. doi: 10.1364/JOT.72.000373 [16] LI N Q, PAN W, LOCQUET A, et al. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection[J]. Optics Letters, 2015, 40(19): 4416-4419. doi: 10.1364/OL.40.004416 [17] LIN F Y, LIU J M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback[J]. Optics Communications, 2003, 221(1-3): 173-180. doi: 10.1016/S0030-4018(03)01466-4 [18] LIN F Y, CHAO Y K, WU T C. Effective bandwidths of broadband chaotic signals[J]. IEEE Journal of Quantum Electronics, 2012, 48(8): 1010-1014. doi: 10.1109/JQE.2012.2198195 [19] KANNO K, UCHIDA A. Consistency and complexity in coupled semiconductor lasers with time-delayed optical feedback[J]. Physical Review E, 2012, 86(6): 066202. doi: 10.1103/PhysRevE.86.066202 [20] RONTANI D, LOCQUET A, SCIAMANNA M, et al. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback[J]. Optics Letters, 2007, 32(20): 2960-2962. doi: 10.1364/OL.32.002960 [21] RONTANI D, LOCQUET A, SCIAMANNA M, et al. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view[J]. IEEE Journal of Quantum Electronics, 2009, 45(7): 879-1891. doi: 10.1109/JQE.2009.2013116 [22] OHTSUBO J. Semiconductor Lasers: Stability, Instability and Chaos[M]. Heidelberg: Springer, 2013. [23] 韩韬, 刘香莲, 李璞, 等. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响[J]. 物理学报,2017,66(12):124203. doi: 10.7498/aps.66.124203HAN T, LIU X L, LI P, et al. Influence of the linewidth enhancement factor on the characteristics of the random number extracted from the optical feedback semiconductor laser[J]. Acta Physica Sinica, 2017, 66(12): 124203. (in Chinese) doi: 10.7498/aps.66.124203 [24] 李增, 冯玉玲, 王晓茜, 等. 半导体激光器输出混沌光的延时特性和带宽[J]. 物理学报,2018,67(14):140501. doi: 10.7498/aps.67.20180035LI Z, FENG Y L, WANG X Q, et al. Time delay characteristics and bandwidth of chaotic laser from semiconductor laser[J]. Acta Physica Sinica, 2018, 67(14): 140501. (in Chinese) doi: 10.7498/aps.67.20180035 [25] ZHAO A K, JIANG N, LIU SH Q, et al. Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback[J]. Optics Express, 2019, 27(9): 12336-12348. doi: 10.1364/OE.27.012336 [26] LI S S, CHAN S C. Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 541-552. doi: 10.1109/JSTQE.2015.2427521 [27] XU Y P, ZHANG M J, ZHANG L, et al. Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback[J]. Optics Letters, 2017, 42(20): 4107-4110. doi: 10.1364/OL.42.004107 [28] HONG Y H, CHEN X F, SPENCER P S, et al. Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator[J]. IEEE Journal of Quantum Electronics, 2015, 51(3): 1200106. [29] CHENG C H, CHEN Y CH, LIN F Y. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning[J]. Optics Express, 2015, 23(3): 2308-2319. doi: 10.1364/OE.23.002308 [30] JIANG N, WANG CH, XUE CH P, et al. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens[J]. Optics Express, 2017, 25(13): 14359-14367. doi: 10.1364/OE.25.014359 [31] 孙巍阳, 张胜海, 吴天安, 等. 双光反馈双光注入混沌半导体激光器延时特征峰抑制[J]. 激光与光电子学进展,2016,53(12):121406.SUN W Y, ZHANG SH H, WU T A, et al. Delay characteristic peak suppression of bioptical feedback bioptical injection chaotic semiconductor laser[J]. Laser &Optoelectronics Progress, 2016, 53(12): 121406. (in Chinese) [32] QIAO L J, LV T SH, XU Y, et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers[J]. Optics Letters, 2019, 44(22): 5394-5397. doi: 10.1364/OL.44.005394 [33] KANNO K, UCHIDA A, BUNSEN M. Complexity and bandwidth enhancement in unidirectionally coupled semiconductor lasers with time-delayed optical feedback[J]. Physical Review E, 2016, 93(3): 032206. doi: 10.1103/PhysRevE.93.032206 [34] MU P H, HE P F, LIU Q L, et al. Numerical study of the time-delay signature in chaos optical injection system with phase-conjugate feedback[J]. Optik, 2019, 179: 71-75. doi: 10.1016/j.ijleo.2018.10.164 [35] ZHANG J ZH, LI M W, WANG A B, et al. Time-delay-signature-suppressed broadband chaos generated by scattering feedback and optical injection[J]. Applied Optics, 2018, 57(22): 6314-6317. doi: 10.1364/AO.57.006314 [36] XUE CH P, JIANG N, LV Y X, et al. Security-enhanced chaos communication with time-delay signature suppression and phase encryption[J]. Optics Letters, 2016, 41(16): 3690-3693. doi: 10.1364/OL.41.003690 [37] 张依宁, 徐艾诗, 冯玉玲, 等. 光电反馈半导体激光器输出光的混沌特性[J]. 光学学报,2020,40(12):1214001. doi: 10.3788/AOS202040.1214001ZHANG Y N, XU A SH, FENG Y L, et al. Chaotic characteristics of output light by photoelectric feedback semiconductor laser[J]. Acta Optica Sinica, 2020, 40(12): 1214001. (in Chinese) doi: 10.3788/AOS202040.1214001 [38] 张依宁, 冯玉玲, 王晓茜, 等. 半导体激光器混沌输出的延时特征和带宽[J]. 物理学报,2020,69(9):090501. doi: 10.7498/aps.69.20191881ZHANG Y N, FENG Y L, WANG X Q, et al. Time delay signature and bandwidth of chaotic laser output from semiconductor laser[J]. Acta Physica Sinica, 2020, 69(9): 090501. (in Chinese) doi: 10.7498/aps.69.20191881 [39] PECORA L M, CARROLL T L. Driving systems with chaotic signals[J]. Physical Review A, 1991, 44(4): 2374-2383. doi: 10.1103/PhysRevA.44.2374 [40] KANG Z X, SUN J, MA L, et al. Multimode synchronization of chaotic semiconductor ring laser and its potential in chaos communication[J]. IEEE Journal of Quantum Electronics, 2014, 50(3): 148-157. doi: 10.1109/JQE.2014.2299593 [41] CAI X L, HO Y L D, MEZOSI G, et al. Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers[J]. IEEE Journal of Quantum Electronics, 2012, 48(3): 406-418. doi: 10.1109/JQE.2012.2182759 [42] JAYAPRASATH E, HOU Y SH, WU ZH M, et al. Anticipation in the polarization chaos synchronization of uni-directionally coupled vertical-cavity surface-emitting lasers with polarization-preserved optical injection[J]. IEEE Access, 2018, 6: 58482-58490. doi: 10.1109/ACCESS.2018.2874625 [43] CHEN X F, HU H P. Chaos synchronisation of electro-optical chaotic systems with partially different parameters[J]. IET Optoelectronics, 2016, 10(3): 89-93. doi: 10.1049/iet-opt.2015.0039 [44] AL BAYATI B M, AHMAD A K, AL NAIMEE K A M. Effect of control parameters on chaos synchronization by means of optical feedback[J]. Optics Communications, 2020, 472: 126032. doi: 10.1016/j.optcom.2020.126032 [45] YANG L, PAN W, YAN L SH, et al. Mapping the dynamic complexity and synchronization in unidirectionally coupled external-cavity semiconductor lasers using permutation entropy[J]. Journal of the Optical Society of America B, 2015, 32(7): 1463-1470. doi: 10.1364/JOSAB.32.001463 [46] SASAKI T, KAKESU I, MITSUI Y, et al. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution[J]. Optics Express, 2017, 25(21): 26029-26044. [47] BÖHM F, SAHAKIAN S, DOOMS A, et al. Stable high-speed encryption key distribution via synchronization of chaotic optoelectronic oscillators[J]. Physical Review Applied, 2020, 13: 064014. doi: 10.1103/PhysRevApplied.13.064014 [48] XIANG SH Y, HAN Y N, WANG H N, et al. Zero-lag chaos synchronization properties in a hierarchical tree-type network consisting of mutually coupled semiconductor lasers[J]. Nonlinear Dynamics, 2020, 99(4): 2893-2906. doi: 10.1007/s11071-020-05479-9 [49] KANNO K, HIDA T, UCHIDA A, et al. Spontaneous exchange of leader-laggard relationship in mutually coupled synchronized semiconductor lasers[J]. Physical Review E, 2017, 95(5): 052212. doi: 10.1103/PhysRevE.95.052212 [50] 李娟, 冯勇, 杨旭强, 等. 三维可逆混沌映射图像加密及其优化算法[J]. 光学 精密工程,2008,16(9):1738-1745.LI J, FENG Y, YANG X Q, et al. Invertible chaotic 3D map based image encryption and its optimized algorithm[J]. Optics and Precision Engineering, 2008, 16(9): 1738-1745. (in Chinese) [51] 刘群, 刘崇, 朱小磊, 等. 星载海洋激光雷达最佳工作波长分析[J]. 中国光学,2020,13(1):148-155. doi: 10.3788/co.20201301.0148LIU Q, LIU CH, ZHU X L, et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2020, 13(1): 148-155. (in Chinese) doi: 10.3788/co.20201301.0148 [52] ZHONG D ZH, XU G L, LUO W, et al. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs[J]. Optics Express, 2017, 25(18): 21684-21704. doi: 10.1364/OE.25.021684 [53] WANG B J, GUO ZH W, SHEN ZH M, et al. Underwater 3D imaging utilizing 520 nm chaotic lidar[J]. Journal of Russian Laser Research, 2020, 41(4): 399-405. doi: 10.1007/s10946-020-09892-8 [54] 唐士文, ANNOVAZZI-LODI V, 王昭. 光学密码术最新进展[J]. 中国光学,2014,7(1):89-97.TANG SH W, ANNOVAZZI-LODI V, WANG ZH. Recent advances in optical cryptography[J]. Chinese Optics, 2014, 7(1): 89-97. (in Chinese) [55] KE J X, YI L L, XIA G Q, et al. Chaotic optical communications over 100 km fiber transmission at 30 Gb/s bit rate[J]. Optics Letters, 2018, 43(6): 1323-1326. doi: 10.1364/OL.43.001323 [56] LI Q L, LU SH SH, BAO Q, et al. Simultaneous trilateral communication based on three mutually coupled chaotic semiconductor lasers with optical feedback[J]. Applied Optics, 2018, 57(2): 251-257. doi: 10.1364/AO.57.000251 [57] 郭帅, 苏杭, 黄星灿, 等. 光学无创血糖浓度检测方法的研究进展[J]. 中国光学,2019,12(6):1235-1248. doi: 10.3788/co.20191206.1235GUO SH, SU H, HUANG X C, et al. Research progress in optical methods for noninvasive blood glucose detection[J]. Chinese Optics, 2019, 12(6): 1235-1248. (in Chinese) doi: 10.3788/co.20191206.1235 [58] SHAHZADI R, ANWAR S M, QAMAR F, et al. Secure EEG signal transmission for remote health monitoring using optical chaos[J]. IEEE Access, 2019, 7: 57769-57778. doi: 10.1109/ACCESS.2019.2912548