留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字微镜器件超分辨成像光学系统装调误差影响研究

邢思远 王超 徐淼 李英超 史浩东 刘壮 付强

邢思远, 王超, 徐淼, 李英超, 史浩东, 刘壮, 付强. 数字微镜器件超分辨成像光学系统装调误差影响研究[J]. 中国光学(中英文), 2021, 14(5): 1194-1201. doi: 10.37188/CO.2020-0220
引用本文: 邢思远, 王超, 徐淼, 李英超, 史浩东, 刘壮, 付强. 数字微镜器件超分辨成像光学系统装调误差影响研究[J]. 中国光学(中英文), 2021, 14(5): 1194-1201. doi: 10.37188/CO.2020-0220
XING Si-yuan, WANG Chao, XU Miao, LI Ying-chao, SHI Hao-dong, LIU Zhuang, FU Qiang. Influence of alignment error on DMD super-resolution imaging optical system[J]. Chinese Optics, 2021, 14(5): 1194-1201. doi: 10.37188/CO.2020-0220
Citation: XING Si-yuan, WANG Chao, XU Miao, LI Ying-chao, SHI Hao-dong, LIU Zhuang, FU Qiang. Influence of alignment error on DMD super-resolution imaging optical system[J]. Chinese Optics, 2021, 14(5): 1194-1201. doi: 10.37188/CO.2020-0220

数字微镜器件超分辨成像光学系统装调误差影响研究

基金项目: 国家自然科学基金(No. 61805028,No. 61805027,No. 61705019,No. 61701045);装发2020年第二批快速扶持项目(No. 61404140517);科工局专项(No. KJSP2016010202);国家自然基金天文联合基金(No. U1731240);吉林省自然科学基金(No. 20180101338JC);应用光学国家重点实验室开放基金(No. SKLA02020001A11)
详细信息
    作者简介:

    邢思远(1997—),男,辽宁铁岭人,硕士研究生,2019年于长春理工大学获得学士学位,主要从事光学设计、计算光学等方面的研究。Email:1249824042@qq.com

    李英超(1966—),男,吉林长春人,工学博士,教授,博士生导师,中国宇航协会光电技术专委会常务委员,主要从事多维度光学特性测试与探测技术,先进光学成像测试技术。Email:hsjlyc@126.com

  • 中图分类号: O436

Influence of alignment error on DMD super-resolution imaging optical system

Funds: Supported by National Natural Science Foundation of China(No. 61805028, No. 61805027, No. 61705019, No. 61701045); The Second Batch of Rapid Support Projects in 2020(No. 61404140517); Special Project of Science and Industry Bureau(No. KJSP2016010202); Joint Astronomical Fund of National Natural Science Foundation of China(No. U1731240); Natural Science Foundation of Jilin Province(No. 20180101338JC); Open Fund of State Key Laboratory of Applied Optics(No. SKLA02020001A11)
More Information
  • 摘要: 目前对于超分辨成像技术的研究主要集中在超分辨重建算法方面,光学系统本身的装调误差对超分辨成像结果的影响尚未见报道。针对这一问题,开展了装调误差对超分辨成像影响的研究,建立了基于数字微镜器件(DMD)的超分辨成像光学系统的基本成像模型,设计了一个工作波段为8~12 μm的DMD超分辨成像光学系统,提出了装调误差对超分辨成像质量影响的分析方法。在成像模型中分别引入适当的偏心、倾斜、镜片间隔误差、离焦等装调误差,对超分辨重建结果进行仿真分析,得出了该超分辨成像光学系统装调时的公差范围:该系统在加工装调时X方向总体偏心误差控制在±0.07 mm以内,Y方向总体偏心误差控制在±0.05 mm以内,X方向和Y方向的总体倾斜误差控制在±0.06°以内,总体镜片间隔误差控制在±0.02 mm以内,成像物镜的离焦量控制在±0.04 mm以内,投影物镜的离焦量控制在±0.05 mm以内,在此范围内超分辨成像光学系统可以保证超分辨成像的质量。

     

  • 图 1  仿真流程图

    Figure 1.  Simulation flow chart

    图 2  视场设置

    Figure 2.  Field of view settings

    图 3  (a)原图和(b)OMP重构图像

    Figure 3.  (a) Original image and (b) OMP reconstructed image

    图 4  光学系统总体构成

    Figure 4.  Overall structure of the optical system

    图 5  光学系统结构图

    Figure 5.  Structural diagram of optical system

    图 6  光学系统的传递函数

    Figure 6.  Transfer function of the optical system

    图 7  镜片偏心量与重建图像PSNR值的关系

    Figure 7.  Relationship between lens eccentricity and PSNR value of reconstructed image

    图 8  镜片倾斜量与重建图像PSNR值的关系

    Figure 8.  Relationship between lens tilt and PSNR of reconstructed images

    图 9  镜片间隔误差与重建图像PSNR值的关系

    Figure 9.  Relationship between lens spacing error and the PSNR of reconstructed images

    图 10  光学系统离焦与重建图像PSNR值之间的关系

    Figure 10.  Relationship between defocus of the optical system and PSNR value of the reconstructed image

    表  1  光学系统参数

    Table  1.   Performance parameters of the optical system

    ParameterValue
    Wavelength/μm8~12
    Field of view FOV(X/Y)/(°)0~4.4/0~3.52
    F number1.76
    DMD array size1920 pixel×1080 pixel
    DMD pixel size/μm10.8
    Detector pixel size/μm17
    Detector array size640 pixel×512 pixel
    Dynamic range of detector/dB29
    下载: 导出CSV

    表  2  公差分配结果

    Table  2.   Tolerance allocation results

    偏心/mm倾斜/(°)镜片间隔
    误差/mm
    成像物镜
    离焦/mm
    投影物镜
    离焦/mm
    XYXY
    0.070.050.060.060.020.040.05
    下载: 导出CSV
  • [1] 张旭东. 基于压缩感知和深度学习的超分辨成像方法研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2019.

    ZHANG X D. Research on super-resolution imaging based on compressive sensing and deep learning[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics Chinese Academy of Sciences), 2019. (in Chinese).
    [2] TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al.. NTIRE 2017 challenge on single image super-resolution: methods and results[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, IEEE, 2017: 1110-1121.
    [3] YANG J CH, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. doi: 10.1109/TIP.2010.2050625
    [4] YANG SH Y, SUN F H, WANG M, et al.. Novel super resolution restoration of remote sensing images based on compressive sensing and example patches-aided dictionary learning[C]. 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, IEEE, 2011: 1-6.
    [5] 张赛文, 林丹樱, 于斌, 等. 基于压缩感知的三维单分子定位显微成像方法研究[J]. 中国光学,2020,13(5):1065-1074. doi: 10.37188/CO.2020-0003

    ZHANG S W, LIN D Y, YU B, et al. Three-dimensional single-molecule localization microscopy imaging based on compressed sensing[J]. Chinese Optics, 2020, 13(5): 1065-1074. (in Chinese) doi: 10.37188/CO.2020-0003
    [6] 朱丹彤. 编码孔径成像光谱仪系统集成及光谱复原实验研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.

    ZHU D T. Research on system integration and spectral restoration experiment of coded aperture imaging spectrometer[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2018. (in Chinese).
    [7] DUMAS J P, LODHI M A, BAJWA W U, et al. Computational imaging with a highly parallel image-plane-coded architecture: challenges and solutions[J]. Optics Express, 2016, 24(6): 6145-6155. doi: 10.1364/OE.24.006145
    [8] 孙小桐. 基于常见模糊类型的图像复原技术方法研究[D]. 长春: 长春工业大学, 2019.

    SUN X T. Research on image restoration technology based on common fuzzy types[D]. Changchun: Changchun University of Technology, 2019. (in Chinese).
    [9] 刘铭鑫, 张新, 王灵杰, 等. 压缩感知光谱成像技术的编码孔径与探测器匹配优化[J]. 中国光学,2020,13(2):290-301. doi: 10.3788/co.20201302.0290

    LIU M X, ZHANG X, WANG L J, et al. Optimization of matching coded aperture with detector based on compressed sensing spectral imaging technology[J]. Chinese Optics, 2020, 13(2): 290-301. (in Chinese) doi: 10.3788/co.20201302.0290
    [10] 周程灏, 王治乐, 刘尚阔. 基于空间变化点扩展函数的图像直接复原方法[J]. 光学学报,2017,37(1):0110001. doi: 10.3788/AOS201737.0110001

    ZHOU CH H, WANG ZH L, LIU SH K. Method of image restoration directly based on spatial varied point spread function[J]. Acta Optica Sinica, 2017, 37(1): 0110001. (in Chinese) doi: 10.3788/AOS201737.0110001
    [11] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108
    [12] 张一, 余卿, 张昆, 等. 基于数字微镜器件的并行彩色共聚焦测量系统[J]. 光学 精密工程,2020,28(4):859-866.

    ZHANG Y, YU Q, ZHANG K, et al. Parallel chromatic confocal measurement system based on digital micromirror device[J]. Optics and Precision Engineering, 2020, 28(4): 859-866. (in Chinese)
    [13] 王丽, 王威, 陈博. 改进的粒子群优化正交匹配追踪重构算法[J]. 小型微型计算机系统,2019,40(8):1755-1759. doi: 10.3969/j.issn.1000-1220.2019.08.034

    WANG L, WANG W, CHEN B. Improved particle swarm optimization orthogonal matching pursuit reconstruction algorithm[J]. Journal of Chinese Computer Systems, 2019, 40(8): 1755-1759. (in Chinese) doi: 10.3969/j.issn.1000-1220.2019.08.034
    [14] 吕博, 冯睿, 寇伟, 等. 折反射式空间相机光学系统设计与杂散光抑制[J]. 中国光学,2020,13(4):822-831. doi: 10.37188/CO.2019-0036

    LV B, FENG R, KOU W, et al. Optical system design and stray light suppression of catadioptric space camera[J]. Chinese Optics, 2020, 13(4): 822-831. (in Chinese) doi: 10.37188/CO.2019-0036
    [15] 陈明惠, 王帆, 张晨曦, 等. 基于压缩感知的频域OCT图像稀疏重构[J]. 光学 精密工程,2020,28(1):189-199. doi: 10.3788/OPE.20202801.0189

    CHEN M H, WANG F, ZHANG CH X, et al. Sparse reconstruction of frequency domain OCT image based on compressed sensing[J]. Optics and Precision Engineering, 2020, 28(1): 189-199. (in Chinese) doi: 10.3788/OPE.20202801.0189
    [16] 刘琳, 沈为民, 周建康. 中波红外大相对孔径消热差光学系统的设计[J]. 中国激光,2010,37(3):675-679. doi: 10.3788/CJL20103703.0675

    LIU L, SHEN W M, ZHOU J K. Design on athermalised middle wavelength infrared optical system with large relative aperture[J]. Chinese Journal of Lasers, 2010, 37(3): 675-679. (in Chinese) doi: 10.3788/CJL20103703.0675
    [17] 李杰, 朱京平. 光波导短程透镜加工容限误差研究[J]. 物理学报,2012,61(24):244208. doi: 10.7498/aps.61.244208

    LI J, ZHU J P. Fabrication tolerances in four analytical designs of geodesic lenses[J]. Acta Physica Sinica, 2012, 61(24): 244208. (in Chinese) doi: 10.7498/aps.61.244208
    [18] 马原, 吕群波, 刘扬阳, 等. 编码孔径成像光谱仪光学放大率误差影响分析[J]. 光谱学与光谱分析,2014,34(11):3157-3161. doi: 10.3964/j.issn.1000-0593(2014)11-3157-05

    MA Y, LV Q B, LIU Y Y, et al. Effect evaluation of optical magnification errors for coded aperture spectrometer[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3157-3161. (in Chinese) doi: 10.3964/j.issn.1000-0593(2014)11-3157-05
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1153
  • HTML全文浏览量:  442
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-01-14
  • 网络出版日期:  2021-05-08
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回