留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星模拟器光学系统视场拼接方法的研究

付景怡 秦天翔 黄蕴涵 刘智颖

付景怡, 秦天翔, 黄蕴涵, 刘智颖. 星模拟器光学系统视场拼接方法的研究[J]. 中国光学(中英文), 2021, 14(6): 1468-1475. doi: 10.37188/CO.2020-0221
引用本文: 付景怡, 秦天翔, 黄蕴涵, 刘智颖. 星模拟器光学系统视场拼接方法的研究[J]. 中国光学(中英文), 2021, 14(6): 1468-1475. doi: 10.37188/CO.2020-0221
FU Jing-yi, QIN Tian-xiang, HUANG Yun-han, LIU Zhi-ying. A field-of-view splicing method for the optical system of a star simulator[J]. Chinese Optics, 2021, 14(6): 1468-1475. doi: 10.37188/CO.2020-0221
Citation: FU Jing-yi, QIN Tian-xiang, HUANG Yun-han, LIU Zhi-ying. A field-of-view splicing method for the optical system of a star simulator[J]. Chinese Optics, 2021, 14(6): 1468-1475. doi: 10.37188/CO.2020-0221

星模拟器光学系统视场拼接方法的研究

基金项目: 国家自然科学基金项目(No. 61805025; No. 61705018);吉林省科学技术发展项目(No. 20200401055GX)
详细信息
    作者简介:

    付景怡(1997—),女,黑龙江肇东人,硕士,2019年于长春理工大学获得学士学位,主要从事光学设计与成像方面的研究。Email:fujingyi0127@163.com

    刘智颖(1981—),女,辽宁朝阳人,博士,教授,博士生导师,2002年、2004年、2009年于长春理工大学分别获得学士、硕士、博士学位,主要从事光学设计与成像方面的研究。Email:lzy@cust.edu.cn

  • 中图分类号: TB133;O439

A field-of-view splicing method for the optical system of a star simulator

Funds: Supported by National Natural Science Foundation of China (No. 61805025; No. 61705018); Science and Technology Development Programme of Jilin Province (No. 20200401055GX)
More Information
  • 摘要: 大视场星模拟器可以提供更广的星图范围。但是现有星模拟器受显示芯片尺寸的限制,最大视场不超过30°。为了增大星模拟器光学系统视场,本文提出一种将同一规格的星模拟器视场进行拼接从而扩大视场的方法。为了降低成本及系统复杂程度、减少系统整体重量,以最少的拼接数目实现最大的拼接视场,文中针对视场重叠区域进行了详细计算与分析,提出以平面拼接为基础的形式简化拼接模型,得到正三角形、正四边形、正六边形3种典型的拼接方式,并推导了3种拼接方式下视场利用率的计算方法。提出了单一视场坐标计算方法,据此确定每个视场的中心位置,得到准确拼接数目。对比结果显示,正六边形拼接方式具有视场利用率更高、拼接数目更少的突出优势,为大视场星模拟器设计提供依据。

     

  • 图 1  拼接前后视场角对比图

    Figure 1.  Contrast of the FOV angle before and after splicing

    图 2  圆锥轴间夹角示意图

    Figure 2.  Schematic diagram of the angle between shafts

    图 3  无缝拼接示意图

    Figure 3.  Schematic diagram of three types of seamless splicings

    图 4  3种拼接方式拼接效果

    Figure 4.  Splicing effects of three splicing methods

    图 5  3种拼接方式的轴间夹角

    Figure 5.  The angle between the axes of the three splicing methods

    图 6  3种拼接方式下视场投影情况

    Figure 6.  Field of view projection results in three splicing modes

    图 7  正三角形拼接方式夹角计算示意图

    Figure 7.  Schematic diagram of the calculation of the included angle of the regular triangle splicing method

    图 8  坐标系的建立

    Figure 8.  Establishment of the coordinate system

    图 9  中心坐标与交点坐标位置排列

    Figure 9.  Arrangement of the center coordinates and intersection coordinates

    图 10  坐标边界位置计算示意图

    Figure 10.  Schematic diagram of calculation of the coordinate boundary position

    图 11  3种方式的拼接数目趋势图

    Figure 11.  Trends in the number of splices in three ways

    表  1  正三角形拼接方式的圈数与个数关系

    Table  1.   Relationship between the number of circles and the number of regular triangle splicing method

    圈数$C$123456
    每圈个数${a_{3C}}$1533516987105
    下载: 导出CSV

    表  2  正四边形拼接方式的圈数与个数关系

    Table  2.   Relationship between the number of circles and the number of square splicing method

    圈数$C$123456
    每圈个数${a_{4C}}$81624324048
    下载: 导出CSV

    表  3  正六边形拼接方式的圈数与个数关系

    Table  3.   Relationship between the number of circles and the number of regular hexagon splicing method

    圈数$C$123456
    每圈个数${a_{6C}}$61218243036
    下载: 导出CSV

    表  4  3种方式的视场利用率对比

    Table  4.   Comparison of FOV utilization of three methods

    拼接方式n$\eta $
    正三角形363.1%
    正四边形473.4%
    正六边形686.2%
    下载: 导出CSV

    表  5  3种方式的拼接数目对比

    Table  5.   Comparison of the number of splices for three methods

    拼接方式拼接角度
    90°120°150°180°
    正三角形921132122773255
    正四边形542 91414812037
    正六边形421 67311341554
    下载: 导出CSV
  • [1] 许洪刚, 韩冰, 李曼丽, 等. 高精度大视场多星模拟器设计与验证[J]. 中国光学,2020,13(6):1343-1351. doi: 10.37188/CO.2020-0024

    XU H G, HAN B, LI M L, et al. Design and verification of high-precision multi-star simulator with a wide field of view[J]. Chinese Optics,, 2020, 13(6): 1343-1351. (in Chinese) doi: 10.37188/CO.2020-0024
    [2] 陈娜, 王凌云, 李光茜, 等. 静态星模拟器准直光学系统设计[J]. 长春理工大学学报(自然科学版),2019,42(5):23-26.

    CHEN N, WANG L Y, LI G X, et al. Design of collimating optical system for static star simulator[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(5): 23-26. (in Chinese)
    [3] 郭敬明, 魏仲慧, 何昕, 等. CCD星图模拟器的设计及验证[J]. 中国光学与应用光学,2010,3(5):486-493.

    GUO J M, WEI ZH H, HE X, et al. Design of CCD star map simulator and its validation[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(5): 486-493. (in Chinese)
    [4] 梁斌, 朱海龙, 张涛, 等. 星敏感器技术研究现状及发展趋势[J]. 中国光学,2016,9(1):16-29. doi: 10.3788/co.20160901.0016

    LIANG B, ZHU H L, ZHANG T, et al. Research status and development tendency of star tracker technique[J]. Chinese Optics, 2016, 9(1): 16-29. (in Chinese) doi: 10.3788/co.20160901.0016
    [5] 李曼丽, 韩冰, 刘航, 等. 大视场多星模拟器标定技术研究[J]. 长春理工大学学报(自然科学版),2020,43(3):17-22.

    LI M L, HAN B, LIU H, et al. Study on calibration technology of large field of view multi-star simulator[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2020, 43(3): 17-22. (in Chinese)
    [6] 李成浩, 何煦, 姬琪, 等. 高时空分辨率动态星模拟器设计[J]. 光学 精密工程,2020,28(3):515-525. doi: 10.3788/OPE.20202803.0515

    LI CH H, HE X, JI Q, et al. Design of high spatiotemporal resolution dynamic star simulator[J]. Optics and Precision Engineering, 2020, 28(3): 515-525. (in Chinese) doi: 10.3788/OPE.20202803.0515
    [7] 孟遥, 张国玉, 孙高飞, 等. 基于硅基液晶拼接的高对比度动态星模拟器光学系统[J]. 光学 精密工程,2016,24(3):511-520. doi: 10.3788/OPE.20162403.0511

    MENG Y, ZHANG G Y, SUN G F, et al. Optical system of high contrast dynamic star simulator based on LCOS splicing technology[J]. Optics and Precision Engineering, 2016, 24(3): 511-520. (in Chinese) doi: 10.3788/OPE.20162403.0511
    [8] 陈启梦, 张国玉, 孙向阳, 等. 高精度LCOS动态星模拟器的光学系统设计[J]. 中国激光,2014,41(7):0716003. doi: 10.3788/CJL201441.0716003

    CHEN Q M, ZHANG G Y, SUN X Y, et al. Optical system design of LCOS-based and high precision dynamic star simulator[J]. Chinese Journal of Lasers, 2014, 41(7): 0716003. (in Chinese) doi: 10.3788/CJL201441.0716003
    [9] 刘欢. 大视场单星模拟器关键技术研究[D]. 长春: 长春理工大学, 2018.

    LIU H. Key technology of single star simulator of large-field-view[D]. Changchun: Changchun University of Science and Technology, 2018. (in Chinese).
    [10] 代雨, 程欣, 张文明, 等. 基于DMD的大视场长出瞳距星模拟器光学系统设计[J]. 应用光学,2020,41(5):891-897. doi: 10.5768/JAO202041.0501003

    DAI Y, CHEN X, ZHANG W M, et al. Design of optical system based on DMD for simulator with large field of view and long exit pupil distance[J]. Journal of Applied Optics, 2020, 41(5): 891-897. (in Chinese) doi: 10.5768/JAO202041.0501003
    [11] 代雨. 大视场高动态星模拟器光学系统的设计与研究[D]. 北京: 中国科学院大学(中国科学院光电技术研究所), 2020.

    DAI Y. Design and research of optical system for large field of view dynamic star simulator[D]. Beijing: University of Chinese Academy of Science (Institute of Optics and Electronics, Chinese Academy of Sciences), 2020. (in Chinese).
    [12] 史立芳, 曹阿秀, 刘艳, 等. 大视场人工复眼结构设计方法与实验[J]. 光电工程,2013,40(7):27-33. doi: 10.3969/j.issn.1003-501X.2013.07.005

    SHI L F, CAO A X, LIU Y, et al. Design and experiments of artificial compound eye with large view field[J]. Opto-Electronic Engineering, 2013, 40(7): 27-33. (in Chinese) doi: 10.3969/j.issn.1003-501X.2013.07.005
    [13] 史立芳. 大视场人工复眼成像结构研究与实验[D]. 成都: 电子科技大学, 2014.

    SHI L F. Research and experiment on artificial compound eye imaging system with large field of view[D]. Chengdu: University of Electronic Science and Technology of China, 2014. (in Chinese).
    [14] CLARE B W, KEPERT D L. The closest packing of equal circles on a sphere[J]. Proceedings of the Royal Society A. Mathematical,Physical and Engineering Sciences, 1986, 405(1829): 329-344.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  1136
  • HTML全文浏览量:  284
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-01-14
  • 网络出版日期:  2021-03-27
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回