留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface plasmon resonance characteristics of a graphene nano-disk based on three-dimensional boundary element method

WANG Shuo HU Bin LIU Juan

王硕, 胡滨, 刘娟. 基于三维边界元算法的石墨烯纳米圆盘表面等离子体共振特性研究[J]. 中国光学(中英文), 2021, 14(5): 1288-1304. doi: 10.37188/CO.2021-0004
引用本文: 王硕, 胡滨, 刘娟. 基于三维边界元算法的石墨烯纳米圆盘表面等离子体共振特性研究[J]. 中国光学(中英文), 2021, 14(5): 1288-1304. doi: 10.37188/CO.2021-0004
WANG Shuo, HU Bin, LIU Juan. Surface plasmon resonance characteristics of a graphene nano-disk based on three-dimensional boundary element method[J]. Chinese Optics, 2021, 14(5): 1288-1304. doi: 10.37188/CO.2021-0004
Citation: WANG Shuo, HU Bin, LIU Juan. Surface plasmon resonance characteristics of a graphene nano-disk based on three-dimensional boundary element method[J]. Chinese Optics, 2021, 14(5): 1288-1304. doi: 10.37188/CO.2021-0004

基于三维边界元算法的石墨烯纳米圆盘表面等离子体共振特性研究

详细信息
  • 中图分类号: O431.1

Surface plasmon resonance characteristics of a graphene nano-disk based on three-dimensional boundary element method

doi: 10.37188/CO.2021-0004
Funds: Supported by National Natural Science Foundation of China (No. 61875010)
More Information
    Author Bio:

    Wang Shuo (1994—), male, born in Binzhou City, Shandong Province. He is a master candidate. He has been studying optical engineering at School of Optoelectronics, Beijing Institute of Technology since 2018. His research interest is full-vector diffraction algorithm. E-mail: 2623967359@qq.com

    Hu Bin (1981—), male, born in Cangzhou, Hebei Province. He is an associate professor and a doctoral supervisor. His main research interests include SPP optics, metamaterials, metasurface devices, graphene-based photonic devices, micro-nano optics, and full-vector diffraction algorithm. E-mail: hubin@bit.edu.cn

    Corresponding author: hubin@bit.edu.cn
  • 摘要: 相对于有限元、有限时域差分等常用的仿真算法,边界元算法具有精度高、占用内存少、善于处理复杂结构的优点。本文给出了三维边界元算法的基本原理,编写了基于C++语言的三维边界元算法程序,并用其研究了石墨烯纳米圆盘结构的表面等离子体共振特性;计算了石墨烯纳米圆盘在不同化学势下的散射截面谱线及共振波长下电磁场分布等物理量,分析了石墨烯纳米圆盘在红外波段的电磁响应性质。考虑到加工过程中产生的缺陷会导致石墨烯材料出现褶皱,故又研究了石墨烯纳米圆盘中心处产生凸起后,凸起结构的几何参数对共振强度、波长等参量的影响,并采用电荷运动的弹簧振子模型对仿真结果进行了解释。

     

  • 图 1  三维空间散射示意图

    Figure 1.  Schematic of three dimensional scattering

    图 2  石墨烯模型以及面元划分方法(a)石墨烯圆盘模型;(b)凸起石墨烯圆盘模型;(c)石墨烯圆盘建模的网格划分;(d)石墨烯圆盘所建网格的外法向矢量(蓝色箭头所示,见网络彩图)

    Figure 2.  Graphene model and surface-element division method (a) Graphene nanodisk model; (b) convex graphene nanodisk model; (c) mesh generation of graphene nanodisk model; (d) outer normal vectors of the meshes generated in graphene nanodisk (shown by blue arrows)

    图 3  边界元算法流程图

    Figure 3.  Flow chart of boundary element method

    图 4  边界元算法与有限时域差分算法结果对比图。(a)边界元获得的SCS谱线;(b)共振波长下边界元获得的磁场分布;(c)共振波长下边界元获得的电场分布;(d)有限时域差分获得的SCS谱线;(e)共振波长下有限时域差分获得的磁场分布;(f)共振波长下有限时域差分获得的电场分布

    Figure 4.  Comparison of the results from BEM and FDTD. (a) SCS spectrum obtained by BEM; (b) magnetic field distribution obtained by BEM under the resonance wavelength; (c) electric field distribution obtained by BEM under the resonance wavelength; (d) SCS spectrum obtained by FDTD; (e) magnetic field distribution obtained by FDTD under the resonance wavelength; (f) electric field distribution obtained by FDTD under the resonance wavelength

    图 5  SCS对石墨烯化学势的依赖关系。(a) SCS谱线;(b)散射、吸收系数;(c)消光系数与波长平方乘积

    Figure 5.  Dependence of SCS on the chemical potential of graphene. (a) SCS spectrum; (b) scattering and absorption coefficients; (c) extinction coefficient multiplied by the square of wavelength

    图 6  凸起的形状对SCS谱线的影响。(a)SCS谱线与凸起高度的关系;(b)SCS谱线与凸起宽度的关系

    Figure 6.  Influence of convex shape on SCS spectrum. (a) Relationship between SCS spectrum and convex height; (b) relationship between SCS spectrum and convex width

    表  1  Parameters of mesh generation on the upper and lower surfaces of graphene nanodisk

    Table  1.   Parameters of mesh generation on the upper and lower surfaces of graphene nanodisk

    Ring i1234567891011
    Ring width/nm2.753.853.63.353.12.852.62.352.11.851.6
    Number of surface elements per ring44816243648648096116
    下载: 导出CSV
  • [1] WANG B, WANG G P. Simulations of nanoscale interferometer and array focusing by metal heterowaveguides[J]. Optics Express, 2005, 13(26): 10558-10563. doi: 10.1364/OPEX.13.010558
    [2] LI B, HU B, YANG Y L, et al. Demagnification imaging improved by mask in a hyperlens photolithography system[J]. Plasmonics, 2007, 12(3): 735-741.
    [3] EL-SAYED I H, HUANG X H, EL-SAYED M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer[J]. Nano Letters, 2005, 5(5): 829-834. doi: 10.1021/nl050074e
    [4] ATWATER H A, POLMAN A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3): 205-213. doi: 10.1038/nmat2629
    [5] ZIJLSTRA P, CHON J W M, GU M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413. doi: 10.1038/nature08053
    [6] CHEN ZH X, WANG W B, LIANG CH, et al. Progress on two-dimensional quantum sheets and their optics[J]. Chinese Optics, 2021, 14(1): 1-17. (in Chinese) doi: 10.37188/CO.2020-0060
    [7] CHRISTENSEN J, MANJAVACAS A, THONGRATTANASIRI S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 2012, 6(1): 431-440. doi: 10.1021/nn2037626
    [8] LIU P H, ZHANG X ZH, MA Z H, et al. Surface Plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 2013, 21(26): 32432-32440. doi: 10.1364/OE.21.032432
    [9] HE X Y, LIU F, LIN F T, et al. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides[J]. Optics Letters, 2021, 46(3): 472-475. doi: 10.1364/OL.415187
    [10] WU L, CHU H S, KOH W S, et al. Highly sensitive graphene biosensors based on surface Plasmon resonance[J]. Optics Express, 2010, 18(14): 14395-14400. doi: 10.1364/OE.18.014395
    [11] PENG J L, ZHU ZH H, ZHANG J F, et al. Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks[J]. Applied Physics Express, 2016, 9(5): 055102. doi: 10.7567/APEX.9.055102
    [12] HE X Y. Tunable terahertz graphene metamaterials[J]. Carbon, 2015, 82: 229-237. doi: 10.1016/j.carbon.2014.10.066
    [13] PENG J, HE X Y, SHI CH Y Y, et al. Investigation of graphene supported terahertz elliptical metamaterials[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2020, 124: 114309. doi: 10.1016/j.physe.2020.114309
    [14] TIAN H J, LIU Q L, YUE H, et al. Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed[J]. Chinese Optics, 2021, 14(1): 206-212. (in Chinese) doi: 10.37188/CO.2020-0153
    [15] CONG C X, YU T, NI Z H, et al. Fabrication of graphene nanodisk arrays using nanosphere lithography[J]. J. Phys. Chem. C, 2009, 113(16): 6529-6532. doi: 10.1021/jp900011s
    [16] THONGRATTANASIRI S, KOPPENS F H L, DE ABAJO F J G. Complete optical absorption in periodically patterned graphene[J]. Physical Review Letters, 2012, 108: 047401. doi: 10.1103/PhysRevLett.108.047401
    [17] FANG ZH Y, WANG Y M, SCHLATHER A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 2014, 14(1): 299-304. doi: 10.1021/nl404042h
    [18] YAN H G, XIA F N, LI ZH Q, et al. Plasmonics of coupled graphene micro-structures[J]. New Journal of Physics, 2012, 14: 125001. doi: 10.1088/1367-2630/14/12/125001
    [19] ZUNDEL L, MANJAVACAS A. Spatially resolved optical sensing using graphene nanodisk arrays[J]. ACS Photonics, 2017, 4(7): 1831-1838.
    [20] KARANIKOLAS V D, MAROCICO C A, BRADLEY A L. Tunable and long-range energy transfer efficiency through a graphene nanodisk[J]. Physical Review B, 2016, 93: 035426. doi: 10.1103/PhysRevB.93.035426
    [21] DENG SH K, BERRY V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications[J]. Materials Today, 2016, 19(4): 197-212. doi: 10.1016/j.mattod.2015.10.002
    [22] DU ZH Y. Study of enhanced localized surface plasmonic resonance of graphene nano-ribbons[D]. Beijing: Beijing Institute of Technology, 2019. (in Chinese)
    [23] WANG W H, LI B H, STASSEN E, et al. Localized surface plasmons in vibrating graphene nanodisks[J]. Nanoscale, 2016, 8(6): 3809-3815. doi: 10.1039/C5NR08812G
    [24] SLIPCHENKO T M, NESTEROV M L, HILLENBRAND R, et al. Graphene plasmon reflection by corrugations[J]. ACS Photonics, 2017, 4(12): 3081-3088. doi: 10.1021/acsphotonics.7b00656
    [25] XIA SH X, ZHAI X, WANG L L, et al. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers[J]. Optics Express, 2016, 24(16): 17886-17899. doi: 10.1364/OE.24.017886
    [26] WANG L, LIU X, ZANG J F. Mechanically tunable terahertz graphene plasmonics using soft metasurface[J]. 2D Materials, 2016, 3(4): 041007. doi: 10.1088/2053-1583/3/4/041007
    [27] LIU P. Optical coupling properties of metallic nanoparticles studied by 3D boundary element method[D]. Beijing: Beijing Institute of Technology, 2013. (in Chinese)
    [28] WANG CH Q. Computational Advanced Electromagnetics[M]. Beijing: Peking University Press, 2005. (in Chinese)
    [29] CHANG F K. The investigation of nano-optical elements by 3D boundary element method[D]. Beijing: Beijing Jiaotong University, 2008. (in Chinese)
    [30] LIU P, LIU J, LIU J, et al. Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave[J]. Optics Communications, 2011, 284(4): 1076-1081. doi: 10.1016/j.optcom.2010.10.033
    [31] LIU P H. Investigation on the plasmonics of graphene microstructures[D]. Tianjin: Nankai University, 2014. (in Chinese)
    [32] DU ZH Y, HU B, LIU W G, et al. Plasmonic resonance of distorted graphene nano-ribbon analyzed by boundary element method[J]. Optics Express, 2018, 26(20): 25962-25973. doi: 10.1364/OE.26.025962
    [33] WANG B, ZHANG X, GARCÍA-VIDAL F J, et al. Strong coupling of surface Plasmon polaritons in monolayer graphene sheet arrays[J]. Physical Review Letters, 2012, 109: 073901. doi: 10.1103/PhysRevLett.109.073901
    [34] KATS M A, YU N F, GENEVET P, et al. Effect of radiation damping on the spectral response of plasmonic components[J]. Optics Express, 2011, 19(22): 21748-21753. doi: 10.1364/OE.19.021748
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1202
  • HTML全文浏览量:  267
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-02-02
  • 网络出版日期:  2021-05-10
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回