Luminescence enhancement effect of Ag@SiO2 coreshell nanoparticles on Eu-PMMA films
-
摘要: 为了提高稀土离子的发光性能,在稀土发光材料中引入了贵金属纳米颗粒。金属等离子体共振可以产生局域电场,作用于稀土离子的发光过程,能达到发光增强的效果。Ag@SiO2核壳结构纳米颗粒可以有效控制金属Ag与稀土离子之间的距离,既能达到等离子体共振增强的效果,又可以避免与发光中心距离过近时产生非辐射能量传递导致的荧光淬灭。用滴铸法先将不同浓度的Ag@SiO2纳米颗粒滴在石英片上,再将Eu(dbm)3phen:PMMA: 二氯甲烷混合溶液旋涂制备得到Eu-PMMA复合薄膜。对样品进行形貌表征和发光测量,发现Ag@SiO2纳米颗粒的引入使薄膜的发光强度得到增强,测量的激发光谱的最大增强因子为2.50倍,发射光谱的最大增强因子为2.15倍。同时荧光寿命测量结果显示,含有Ag@SiO2纳米颗粒的薄膜样品的发光寿命也得到延长。在稀土发光材料中引入Ag@SiO2纳米颗粒展现了良好的发光增强效果,且实验方法可操作性强,具有良好的应用潜力。
-
关键词:
- 稀土离子发光 /
- 等离子体增强 /
- Ag@SiO2核壳结构 /
- 聚甲基丙烯酸甲酯
Abstract: In order to improve the luminescent properties of rare earth ions, precious metal nanoparticles were doped into rare earth luminescent materials. Metal plasma resonance can produce local electric field, which acts on the luminescence process of rare earth ions, and can achieve the luminescence enhancement. Ag@SiO2 core-shell nanoparticles can effectively control the distance between metal Ag and rare earth ions, which can not only enhance the plasmonic resonance effect, but also avoid the fluorescence quenching caused by non-radiation energy transfer when they are too close to the emission center. Firstly, the Ag@SiO2 nanoparticles with different concentrations were dropped on the quartz wafers by drop-casting method. Then, the Eu(dbm)3Phen:PMMA: dichloromethane mixed solution was spin-coated to prepare the Eu-PMMA composite film. The morphology characterization and luminescence measurement of the samples showed that the luminescence intensity of the film doped with Ag@SiO2 nanoparticles was enhanced, and the maximum enhancement factor of the measured excitation spectrum was 2.50 times, and the maximum enhancement factor of the emission spectrum was 2.15 times. The results of the fluorescence lifetime measurement of the sample indicated that the luminescence lifetime of the film containing Ag@SiO2 nanoparticles was also prolonged. The doping of Ag@SiO2 nanoparticles in the rare earth luminescent materials shows a good enhancement, and the experimental method is highly operable. It is a promising method to enhance the luminescent intensity of rare earth luminescent materials.-
Key words:
- rare earth ion luminescence /
- plasma enhancement /
- Ag@SiO2 core-shell structure /
- PMMA
-
图 4 Ag@SiO2∶Eu-PMMA发光薄膜的能级结构和表面等离子体增强发光过程示意图:蓝线、红线和绿线分别代表吸收、发光和共振散射增强过程
Figure 4. Schematic diagram of the energy level structure and surface plasmon enhanced luminescence process of Ag@SiO2:Eu-PMMA films. The blue, red and green lines represent absorption, luminescence and resonance scattering enhancement respectively
-
[1] PATTISON P M, TSAO J Y, BRAINARD G C, et al. LEDs for photons, physiology and food[J]. Nature, 2018, 563(7732): 493-500. doi: 10.1038/s41586-018-0706-x [2] LI SH H, WEI X D, LI S S, et al. Up-conversion luminescent nanoparticles for molecular imaging, cancer diagnosis and treatment[J]. International Journal of Nanomedicine, 2020, 15: 9431-9445. doi: 10.2147/IJN.S266006 [3] BAI X, CAPUTO G, HAO ZH D, et al. Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs[J]. Nature Communications, 2014, 5(1): 5702. doi: 10.1038/ncomms6702 [4] DENG R R, QIN F, CHEN R F, et al. Temporal full-colour tuning through non-steady-state upconversion[J]. Nature Nanotechnology, 2015, 10(3): 237-242. doi: 10.1038/nnano.2014.317 [5] WANG H Q, BATENTSCHUK M, OSVET A, et al. Rare-earth ion doped up-conversion materials for photovoltaic applications[J]. Advanced Materials, 2011, 23(22-23): 2675-2680. doi: 10.1002/adma.201100511 [6] WANG X J, QU Y R, ZHAO Y L, et al. Effect of the composition of lanthanide complexes on their luminescence enhancement by Ag@SiO2 core-shell nanoparticles[J]. Nanomaterials, 2018, 8(2): 98. doi: 10.3390/nano8020098 [7] JIANG L, MUNDOOR H, LIU Q K, et al. Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons[J]. ACS Nano, 2016, 10(7): 7064-7072. doi: 10.1021/acsnano.6b03216 [8] HUANG X Y, HAN S Y, HUANG W, et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters[J]. Chemical Society Reviews, 2013, 42(1): 173-201. doi: 10.1039/C2CS35288E [9] SUN Q C, MUNDOOR X, RIBOT J C, et al. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals[J]. Nano Letters, 2014, 14(1): 101-106. doi: 10.1021/nl403383w [10] PARK W, LU D W, AHN S. Plasmon enhancement of luminescence upconversion[J]. Chemical Society Reviews, 2015, 44(10): 2940-2962. doi: 10.1039/C5CS00050E [11] FARES H, STAMBOULI W, ELHOUICHET H, et al. Nano-silver enhanced luminescence of Er3+ ions embedded in tellurite glass, vitro-ceramic and ceramic: impact of heat treatment[J]. RSC Advances, 2016, 6(37): 31136-31145. doi: 10.1039/C6RA02095J [12] KONG L J, ZHAO Y F, KONG K, et al. Fluorescence enhancement of europium nitrobenzoates by Ag@SiO2 nanoparticles in solution[J]. Journal of Luminescence, 2017, 186: 255-261. [13] KUMAR D, DWIVEDI A, SRIVASTAVA M, et al. Gold nanorods modified Eu: Y2O3 dispersed PVA film as a highly sensitive plasmon-enhanced luminescence probe for excellent and fast non-enzymatic detection of H2O2 and glucose[J]. Optik, 2021, 228: 166130. [14] WANG Q R, ZHANG J, SANG X, et al. Enhanced luminescence and prolonged lifetime of Eu-PMMA films based on Au@SiO2 plasmonic hetero-nanorods[J]. Journal of Luminescence, 2018, 204: 284-288. doi: 10.1016/j.jlumin.2018.08.033 [15] DENG W, JIN D Y, DROZDOWICZ-TOMSIA K, et al. Ultrabright Eu-doped plasmonic Ag@SiO2 nanostructures: time-gated bioprobes with single particle sensitivity and negligible background[J]. Advanced Materials, 2011, 23(40): 4649-4654. doi: 10.1002/adma.201102027 [16] GUNAWIDJAJA R, MYINT T, EILERS H. Synthesis of silver/SiO2/Eu∶Lu2O3 core–shell nanoparticles and their polymer nanocomposites[J]. Powder Technology, 2011, 210(2): 157-166. doi: 10.1016/j.powtec.2011.03.011 [17] ZHANG M D, REN Z B, DONG J, et al. Investigation on the enhanced fluorescence emission from self-assembled Au nanorod film[J]. Plasmonics, 2017, 12(6): 1841-1845. doi: 10.1007/s11468-016-0452-6 [18] YIN D G, CAO X ZH, ZHANG L, et al. Fabrication of a novel nanocomposite Ag/graphene@SiO2–NaLuF4∶Yb, Gd, Er for large enhancement upconversion luminescence[J]. Dalton Transactions, 2015, 44(24): 11147-11154. doi: 10.1039/C5DT01059D [19] ALI U, KARIM K J B A, BUANG N A. Review of the properties and applications of poly (methyl methacrylate) (PMMA)[J]. Polymer Reviews, 2015, 55(4): 678-705. doi: 10.1080/15583724.2015.1031377 [20] HASHIM A, ABBAS B. Recent review on poly-methyl methacrylate (PMMA)- polystyrene (PS) blend doped with nanoparticles for modern applications[J]. Research Journal of Agriculture and Biological Sciences, 2019, 14(3): 6-12. [21] GOSEKI R, ISHIZONE T. Poly(methyl methacrylate) (PMMA)[M]//KOBAYASHI S, MÜLLEN K. Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer, 2014. [22] ZHU Y SH, WANG Y H, ZHU J Y, et al. Plasmon multiwavelength-sensitized luminescence enhancement of highly transparent Ag/YVO4∶Eu3+/PMMA film[J]. Journal of Luminescence, 2018, 200: 158-163. doi: 10.1016/j.jlumin.2018.03.081 [23] ZHOU W, HE ZH Q, ZHAO X J. Effect of Ag nanoparticles doped in polymethyl methacrylate matrix for luminescent solar concentrator[J]. Key Engineering Materials, 2014, 599: 291-297. doi: 10.4028/www.scientific.net/KEM.599.291 [24] LAN H, HAN J J, CHEN H P, et al. Ag/PMMA hollow waveguide for solar energy transmission[J]. Frontiers of Chemical Science and Engineering, 2011, 5(3): 303-307. doi: 10.1007/s11705-010-0565-y [25] 董相廷, 何颖, 闫景辉, 等. 纳米AgBr/PMMA光致变色杂化材料制备与表征[J]. 物理化学学报,2003,19(12):1159-1162. doi: 10.3866/PKU.WHXB20031214DONG X T, HE Y, YAN J H, et al. Preparation and characterization of nanosized AgBr/PMMA photochromic hybrid material[J]. Acta Physico-Chimica Sinica, 2003, 19(12): 1159-1162. (in Chinese) doi: 10.3866/PKU.WHXB20031214 [26] CHAI R T, LIAN H ZH, HOU ZH Y, et al. Preparation and characterization of upconversion luminescent NaYF4:Yb3+, Er3+ (Tm3+)/PMMA bulk transparent nanocomposites through in situ photopolymerization[J]. The Journal of Physical Chemistry C, 2010, 114(1): 610-616. doi: 10.1021/jp909180s [27] ZHOU D, LIN X M, WANG A L, et al. Fluorescence enhancement of Tb3+ complexes by adding silica-coated silver nanoparticles[J]. Science China Chemistry, 2015, 58(6): 979-985. doi: 10.1007/s11426-014-5265-x [28] ZHANG J, SONG F, LIN SH X, et al. Tunable fluorescence lifetime of Eu-PMMA films with plasmonic nanostructures for multiplexing[J]. Optics Express, 2016, 24(8): 8228-8236. doi: 10.1364/OE.24.008228