留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag@SiO2核壳纳米颗粒对Eu-PMMA薄膜的发光增强效应

龙江迷 陈晓波 赵国营 李永良 郭敬华 王杰亮 李崧 刘泉林

龙江迷, 陈晓波, 赵国营, 李永良, 郭敬华, 王杰亮, 李崧, 刘泉林. Ag@SiO2核壳纳米颗粒对Eu-PMMA薄膜的发光增强效应[J]. 中国光学(中英文), 2021, 14(6): 1341-1347. doi: 10.37188/CO.2021-0013
引用本文: 龙江迷, 陈晓波, 赵国营, 李永良, 郭敬华, 王杰亮, 李崧, 刘泉林. Ag@SiO2核壳纳米颗粒对Eu-PMMA薄膜的发光增强效应[J]. 中国光学(中英文), 2021, 14(6): 1341-1347. doi: 10.37188/CO.2021-0013
LONG Jiang-mi, CHEN Xiao-bo, ZHAO Guo-ying, LI Yong-liang, GUO Jing-hua, WANG Jie-liang, LI Song, LIU Quan-lin. Luminescence enhancement effect of Ag@SiO2 coreshell nanoparticles on Eu-PMMA films[J]. Chinese Optics, 2021, 14(6): 1341-1347. doi: 10.37188/CO.2021-0013
Citation: LONG Jiang-mi, CHEN Xiao-bo, ZHAO Guo-ying, LI Yong-liang, GUO Jing-hua, WANG Jie-liang, LI Song, LIU Quan-lin. Luminescence enhancement effect of Ag@SiO2 coreshell nanoparticles on Eu-PMMA films[J]. Chinese Optics, 2021, 14(6): 1341-1347. doi: 10.37188/CO.2021-0013

Ag@SiO2核壳纳米颗粒对Eu-PMMA薄膜的发光增强效应

doi: 10.37188/CO.2021-0013
基金项目: 国家自然科学基金项目(No. 51972020,No. 51472028);中央高校基本科研业务费专项资金(No. 017TZ01)
详细信息
    作者简介:

    龙江迷(1994—),女,贵州黔南人,硕士,2021年于北京师范大学物理学系光学专业获得硕士学位。主要从事稀土离子发光学方面的研究。E-mail: ljiangmi@163.com

    陈晓波(1963—),男,福建省福州人,博士,北京师范大学应用光学北京重点实验室的教授、博士生导师,1983年、1986年与1992年北京大学光学专业分别获得学士、硕士和博士学位。作为项目主持人已主持完成国家级和省部级课题项目18项,作为第一作者在Scientific Reports、Optics Express、Optics Letters等发表论文上百篇,其中SCI收录77篇,被引达五百多次。已获授权第一作者国家发明专利4项。入选1997年国家自然科学基金委员会国家教育部国家财政部等七部委的首批全国“国家百千万工程”第一、二层次人才和1995年国家教育部“跨世纪优秀人才”等奖励或荣誉十项。E-mail: chen78xb@sina.com

  • 中图分类号: O433.1

Luminescence enhancement effect of Ag@SiO2 coreshell nanoparticles on Eu-PMMA films

Funds: Supported by the National Natural Science Foundation of China (No. 51972020, No. 51472028); the Fundamental Research Funds for the Central Universities of China (No. 2017TZ01)
More Information
  • 摘要: 为了提高稀土离子的发光性能,在稀土发光材料中引入了贵金属纳米颗粒。金属等离子体共振可以产生局域电场,作用于稀土离子的发光过程,能达到发光增强的效果。Ag@SiO2核壳结构纳米颗粒可以有效控制金属Ag与稀土离子之间的距离,既能达到等离子体共振增强的效果,又可以避免与发光中心距离过近时产生非辐射能量传递导致的荧光淬灭。用滴铸法先将不同浓度的Ag@SiO2纳米颗粒滴在石英片上,再将Eu(dbm)3phen:PMMA: 二氯甲烷混合溶液旋涂制备得到Eu-PMMA复合薄膜。对样品进行形貌表征和发光测量,发现Ag@SiO2纳米颗粒的引入使薄膜的发光强度得到增强,测量的激发光谱的最大增强因子为2.50倍,发射光谱的最大增强因子为2.15倍。同时荧光寿命测量结果显示,含有Ag@SiO2纳米颗粒的薄膜样品的发光寿命也得到延长。在稀土发光材料中引入Ag@SiO2纳米颗粒展现了良好的发光增强效果,且实验方法可操作性强,具有良好的应用潜力。

     

  • 图 1  (a)核壳Ag@SiO2纳米颗粒的TEM图像;(b)滴铸有Ag@SiO2纳米颗粒的石英片的SEM图像

    Figure 1.  (a) TEM image of core-shell Ag@SiO2 nanoparticles; (b) SEM image of quartz flakes dripping with Ag@SiO2 nanoparticles

    图 2  Ag@SiO2纳米颗粒的吸收光谱

    Figure 2.  Absorption spectrum of Ag@SiO2 nanoparticles

    图 3  Eu-PMMA复合薄膜的吸收光谱图

    Figure 3.  Absorption spectrum of Eu-PMMA composite films

    图 4  Ag@SiO2∶Eu-PMMA发光薄膜的能级结构和表面等离子体增强发光过程示意图:蓝线、红线和绿线分别代表吸收、发光和共振散射增强过程

    Figure 4.  Schematic diagram of the energy level structure and surface plasmon enhanced luminescence process of Ag@SiO2:Eu-PMMA films. The blue, red and green lines represent absorption, luminescence and resonance scattering enhancement respectively

    图 5  不同Ag@SiO2纳米颗粒浓度的Eu-PMMA复合薄膜的激发光谱

    Figure 5.  Excitation spectra of Eu-PMMA films with different concentrations of Ag@SiO2 nanoparticles

    图 6  不同Ag@SiO2纳米颗粒浓度的Eu-PMMA复合薄膜的荧光光谱

    Figure 6.  Fluorescence spectra of Eu-PMMA films with different concentrations of Ag@SiO2 nanoparticles

    图 7  随着Ag@SiO2纳米颗粒浓度的增加,薄膜的激发增强因子(A黑线)和薄膜在612 nm处的发光增强因子(B红线)的变化情况

    Figure 7.  The enhancement factor of excitation of films (A black) and the enhancement factor of luminescence of films at 612 nm (B red) varying with the increasing of Ag@SiO2 nanoparticle concentration

    图 8  薄膜样品的发光衰减曲线

    Figure 8.  Luminescence decay curves of film sample

  • [1] PATTISON P M, TSAO J Y, BRAINARD G C, et al. LEDs for photons, physiology and food[J]. Nature, 2018, 563(7732): 493-500. doi: 10.1038/s41586-018-0706-x
    [2] LI SH H, WEI X D, LI S S, et al. Up-conversion luminescent nanoparticles for molecular imaging, cancer diagnosis and treatment[J]. International Journal of Nanomedicine, 2020, 15: 9431-9445. doi: 10.2147/IJN.S266006
    [3] BAI X, CAPUTO G, HAO ZH D, et al. Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs[J]. Nature Communications, 2014, 5(1): 5702. doi: 10.1038/ncomms6702
    [4] DENG R R, QIN F, CHEN R F, et al. Temporal full-colour tuning through non-steady-state upconversion[J]. Nature Nanotechnology, 2015, 10(3): 237-242. doi: 10.1038/nnano.2014.317
    [5] WANG H Q, BATENTSCHUK M, OSVET A, et al. Rare-earth ion doped up-conversion materials for photovoltaic applications[J]. Advanced Materials, 2011, 23(22-23): 2675-2680. doi: 10.1002/adma.201100511
    [6] WANG X J, QU Y R, ZHAO Y L, et al. Effect of the composition of lanthanide complexes on their luminescence enhancement by Ag@SiO2 core-shell nanoparticles[J]. Nanomaterials, 2018, 8(2): 98. doi: 10.3390/nano8020098
    [7] JIANG L, MUNDOOR H, LIU Q K, et al. Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons[J]. ACS Nano, 2016, 10(7): 7064-7072. doi: 10.1021/acsnano.6b03216
    [8] HUANG X Y, HAN S Y, HUANG W, et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters[J]. Chemical Society Reviews, 2013, 42(1): 173-201. doi: 10.1039/C2CS35288E
    [9] SUN Q C, MUNDOOR X, RIBOT J C, et al. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals[J]. Nano Letters, 2014, 14(1): 101-106. doi: 10.1021/nl403383w
    [10] PARK W, LU D W, AHN S. Plasmon enhancement of luminescence upconversion[J]. Chemical Society Reviews, 2015, 44(10): 2940-2962. doi: 10.1039/C5CS00050E
    [11] FARES H, STAMBOULI W, ELHOUICHET H, et al. Nano-silver enhanced luminescence of Er3+ ions embedded in tellurite glass, vitro-ceramic and ceramic: impact of heat treatment[J]. RSC Advances, 2016, 6(37): 31136-31145. doi: 10.1039/C6RA02095J
    [12] KONG L J, ZHAO Y F, KONG K, et al. Fluorescence enhancement of europium nitrobenzoates by Ag@SiO2 nanoparticles in solution[J]. Journal of Luminescence, 2017, 186: 255-261.
    [13] KUMAR D, DWIVEDI A, SRIVASTAVA M, et al. Gold nanorods modified Eu: Y2O3 dispersed PVA film as a highly sensitive plasmon-enhanced luminescence probe for excellent and fast non-enzymatic detection of H2O2 and glucose[J]. Optik, 2021, 228: 166130.
    [14] WANG Q R, ZHANG J, SANG X, et al. Enhanced luminescence and prolonged lifetime of Eu-PMMA films based on Au@SiO2 plasmonic hetero-nanorods[J]. Journal of Luminescence, 2018, 204: 284-288. doi: 10.1016/j.jlumin.2018.08.033
    [15] DENG W, JIN D Y, DROZDOWICZ-TOMSIA K, et al. Ultrabright Eu-doped plasmonic Ag@SiO2 nanostructures: time-gated bioprobes with single particle sensitivity and negligible background[J]. Advanced Materials, 2011, 23(40): 4649-4654. doi: 10.1002/adma.201102027
    [16] GUNAWIDJAJA R, MYINT T, EILERS H. Synthesis of silver/SiO2/Eu∶Lu2O3 core–shell nanoparticles and their polymer nanocomposites[J]. Powder Technology, 2011, 210(2): 157-166. doi: 10.1016/j.powtec.2011.03.011
    [17] ZHANG M D, REN Z B, DONG J, et al. Investigation on the enhanced fluorescence emission from self-assembled Au nanorod film[J]. Plasmonics, 2017, 12(6): 1841-1845. doi: 10.1007/s11468-016-0452-6
    [18] YIN D G, CAO X ZH, ZHANG L, et al. Fabrication of a novel nanocomposite Ag/graphene@SiO2–NaLuF4∶Yb, Gd, Er for large enhancement upconversion luminescence[J]. Dalton Transactions, 2015, 44(24): 11147-11154. doi: 10.1039/C5DT01059D
    [19] ALI U, KARIM K J B A, BUANG N A. Review of the properties and applications of poly (methyl methacrylate) (PMMA)[J]. Polymer Reviews, 2015, 55(4): 678-705. doi: 10.1080/15583724.2015.1031377
    [20] HASHIM A, ABBAS B. Recent review on poly-methyl methacrylate (PMMA)- polystyrene (PS) blend doped with nanoparticles for modern applications[J]. Research Journal of Agriculture and Biological Sciences, 2019, 14(3): 6-12.
    [21] GOSEKI R, ISHIZONE T. Poly(methyl methacrylate) (PMMA)[M]//KOBAYASHI S, MÜLLEN K. Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer, 2014.
    [22] ZHU Y SH, WANG Y H, ZHU J Y, et al. Plasmon multiwavelength-sensitized luminescence enhancement of highly transparent Ag/YVO4∶Eu3+/PMMA film[J]. Journal of Luminescence, 2018, 200: 158-163. doi: 10.1016/j.jlumin.2018.03.081
    [23] ZHOU W, HE ZH Q, ZHAO X J. Effect of Ag nanoparticles doped in polymethyl methacrylate matrix for luminescent solar concentrator[J]. Key Engineering Materials, 2014, 599: 291-297. doi: 10.4028/www.scientific.net/KEM.599.291
    [24] LAN H, HAN J J, CHEN H P, et al. Ag/PMMA hollow waveguide for solar energy transmission[J]. Frontiers of Chemical Science and Engineering, 2011, 5(3): 303-307. doi: 10.1007/s11705-010-0565-y
    [25] 董相廷, 何颖, 闫景辉, 等. 纳米AgBr/PMMA光致变色杂化材料制备与表征[J]. 物理化学学报,2003,19(12):1159-1162. doi: 10.3866/PKU.WHXB20031214

    DONG X T, HE Y, YAN J H, et al. Preparation and characterization of nanosized AgBr/PMMA photochromic hybrid material[J]. Acta Physico-Chimica Sinica, 2003, 19(12): 1159-1162. (in Chinese) doi: 10.3866/PKU.WHXB20031214
    [26] CHAI R T, LIAN H ZH, HOU ZH Y, et al. Preparation and characterization of upconversion luminescent NaYF4:Yb3+, Er3+ (Tm3+)/PMMA bulk transparent nanocomposites through in situ photopolymerization[J]. The Journal of Physical Chemistry C, 2010, 114(1): 610-616. doi: 10.1021/jp909180s
    [27] ZHOU D, LIN X M, WANG A L, et al. Fluorescence enhancement of Tb3+ complexes by adding silica-coated silver nanoparticles[J]. Science China Chemistry, 2015, 58(6): 979-985. doi: 10.1007/s11426-014-5265-x
    [28] ZHANG J, SONG F, LIN SH X, et al. Tunable fluorescence lifetime of Eu-PMMA films with plasmonic nanostructures for multiplexing[J]. Optics Express, 2016, 24(8): 8228-8236. doi: 10.1364/OE.24.008228
  • 加载中
图(8)
计量
  • 文章访问数:  820
  • HTML全文浏览量:  307
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-02-22
  • 网络出版日期:  2021-05-15
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!