留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new automatic cell smear and laser release system for near-infrared light responsive release of nucleated red blood cells

GUO Zhong-yang YOU Qian-nan GE Ming-feng WANG Guo-wei MEI Qian DONG Wen-fei

郭钟扬, 尤倩楠, 葛明锋, 王国伟, 梅茜, 董文飞. 新型自动化细胞涂片和激光释放系统用于近红外光响应释放有核红细胞[J]. 中国光学(中英文), 2021, 14(5): 1273-1287. doi: 10.37188/CO.2021-0015
引用本文: 郭钟扬, 尤倩楠, 葛明锋, 王国伟, 梅茜, 董文飞. 新型自动化细胞涂片和激光释放系统用于近红外光响应释放有核红细胞[J]. 中国光学(中英文), 2021, 14(5): 1273-1287. doi: 10.37188/CO.2021-0015
GUO Zhong-yang, YOU Qian-nan, GE Ming-feng, WANG Guo-wei, MEI Qian, DONG Wen-fei. A new automatic cell smear and laser release system for near-infrared light responsive release of nucleated red blood cells[J]. Chinese Optics, 2021, 14(5): 1273-1287. doi: 10.37188/CO.2021-0015
Citation: GUO Zhong-yang, YOU Qian-nan, GE Ming-feng, WANG Guo-wei, MEI Qian, DONG Wen-fei. A new automatic cell smear and laser release system for near-infrared light responsive release of nucleated red blood cells[J]. Chinese Optics, 2021, 14(5): 1273-1287. doi: 10.37188/CO.2021-0015

新型自动化细胞涂片和激光释放系统用于近红外光响应释放有核红细胞

详细信息
  • 中图分类号: TP394.1; TH691.9

A new automatic cell smear and laser release system for near-infrared light responsive release of nucleated red blood cells

doi: 10.37188/CO.2021-0015
Funds: Supported by National Key Research and Development Program of China (No. 2017YFF0108600); National Natural Science Foundation of China (No. 81771982, No. 61535010, No. 21803075); Key Research and Development Program of Jiangsu Province (Social Development No. BE2019683); and “20 Policies on University Innovation Research” of Jinan City (No. 2018GXRC016)
More Information
    Author Bio:

    GUO Zhong-yang (1995—), male, born in Weifang City, Shandong Province. He is a Master degree candidate mainly engaged in the research of in-vitro diagnostic instrument design, automatic control, etc. E-mail: iszyguo@mail.ustc.edu.cn

    MEI Qian (1977—), female, born in Luoyang City, Henan Province. She is a Ph.D., researcher and doctoral supervisor. She received her bachelor's and master's degrees from Southeast University in 2000 and 2003 respectively, and her doctor's degree from University of Florida in 2007. Her main research interests include the design and manufacture of microfluidic systems and their applications in biomedicine. E-mail: qmei@sibet.ac.cn

    Corresponding author: qmei@sibet.ac.cn
  • 摘要: 为了实现外周血有核红细胞的分离与释放,开发安全有效的非侵入式技术分离有核红细胞以用于产前胎儿疾病诊断,本文以水凝胶材料为基底建立自动化细胞涂片制备系统,并构建用于识别释放有核红细胞的激光会聚和显微成像系统。首先,设计了细胞涂片制备机的机械结构,基于单片机制作上位机控制软件,优化推片角度和速度参数制备水凝胶膜基底涂片,在温敏水凝胶明胶中引入二维材料MXene,结合MXene的近红外光热转换特性,在水凝胶膜表面实现近红外光响应。然后,在水凝胶基底膜表面进行全血推片实验,优化血液推片参数,制备得到单层细胞涂片。最后,建立激光会聚和显微成像光路,对有核红细胞进行识别定位。808 nm激光器的光源经过准直镜和会聚镜聚焦到细胞涂片表面,产生光热效应进行细胞释放。此项工作实现了单层细胞涂片的加工制备,在808 nm近红外光下产生光热效应,经过激光会聚系统的调控,最终得到了光斑直径为300 μm的细胞定点释放区域。本文将自动推片技术应用于以水凝胶膜为基底的单层细胞涂片的制备,建立激光会聚与显微成像光路,通过水凝胶膜的近红外响应以及热响应特性,实现了有核红细胞的识别与定点释放,提高了有核红细胞分离富集效率,在产前筛选诊断领域中具备广阔的应用前景。

     

  • 图 1  细胞涂片制备及激光响应系统示意图

    Figure 1.  Schematic diagram of cell smear preparation and laser response system

    图 2  细胞涂片机械系统原理示意图

    Figure 2.  Schematic diagram of mechanical system of cell smear

    图 3  激光会聚与显微成像系统示意图

    Figure 3.  Schematic diagram of laser focusing and microscopic imaging system

    图 4  自动细胞涂片制备机样机

    Figure 4.  Prototype of preparation machine of automatic cell smear

    图 5  (a)SEM表征;(b)AFM表面粗糙度表征;(c)紫外吸收图谱;(d)光热曲线

    Figure 5.  (a) Characterization by SEM; (b) surface roughness characterization by AFM; (c) ultraviolet absorption spectrum; (d) photo-thermal curves

    图 6  自制细胞涂片与迈瑞SC-120标准细胞涂片效果比对分析:(a-c)玻片;(d-f)水凝胶膜;(g-i)迈瑞SC-120

    Figure 6.  Comparison of self-made cell smear and Mindray SC-120 standard cell smear: (a-c) slide; (d-f) hydrogel membrane; (g-i) Mindray SC-120

    图 7  细胞分布统计

    Figure 7.  Cell distribution statistics

    图 8  (a)NRBC识别定位结果;(b-d)激光会聚前后细胞释放区域比较:(b)光斑直径D = 1700 µm;(c)光斑直径D = 600 µm;(d)光斑直径D = 300 µm

    Figure 8.  (a) Recognition and localization of NRBC; (b-d) comparison of cell release areas before and after laser convergence with different spot diameters. (b) D = 1700 µm; (c) D = 600 µm; (d) D = 300 µm

    表  1  Performance comparisons between the proposed prototype and Mindray SC-120 automatic pushing-staining machine

    Table  1.   Performance comparisons between the proposed prototype and Mindray SC-120 automatic pushing-staining machine

    Key parametersMindray SC-120Proposed prototype
    Purpose of pushingStandard blood smearHydrogel-based smear,
    releasable blood smear
    Degree of automationFully automatic sample loading,
    pushing and staining
    Automatic pushing, and manual
    sample loading and staining
    Mode of pushingBackward blood scraping, wetting and
    pushing (imitation manual production process)
    Blood wetting, and direct pushing
    Parameters of pushingBlood amount, extension time,
    scraping angle, pushing speed/angle
    Hydrogel amount, blood amount,
    pushing speed/angle
    Sample amountBlood amount: 40−200 μLHydrogel amount: 200−300 μL
    Blood amount: 4−15 μL
    Speed range70−150 mm/s0−150 mm/s
    Angle rangeDetailed parameter reporting not available20°−50°
    Mode of parameter adjustmentAutomatically calculate and adjust the
    most matched pushing parameters according
    to blood sample HCT and big data algorithm
    Do experiments in advance according to
    the hydrogel viscosity and blood HCT
    setting, obtain the optimum parameters
    and adjust them by manual programming
    Pusher substrateStandard medical slide with glass substrateStandard medical slide with glass substrate
    or hydrogel substrate
    Modularized platformNoMicrostructural hydrogel-pushing platform
    and blood-pushing platform
    Automatic stainingYesNo
    下载: 导出CSV
  • [1] WU Q M, ZHOU J. Advances in prenatal screening and prenatal diagnosis for birth defect[J]. Chinese Journal of Birth Health &Heredity, 2011, 19(1): 129-131. (in Chinese)
    [2] BIAN X M. Practical Prenatal Diagnosis[M]. Beijing: People’s Military Medical Press, 2008. (in Chinese)
    [3] TABOR A, VESTERGAARD C H F, LIDEGAARD Ø. Fetal loss rate after chorionic villus sampling and amniocentesis: an 11-year national registry study[J]. Ultrasound in Obstetrics &Gynecology, 2009, 34(1): 19-24.
    [4] HUI L S. Noninvasive approaches to prenatal diagnosis: historical perspective and future directions[J]. Methods in Molecular Biology, 2019, 1885: 45-58.
    [5] CHEN P J, TENG P C, ZHU Y ZH, et al. Noninvasive prenatal diagnostics: recent developments using circulating fetal nucleated cells[J]. Current Obstetrics and Gynecology Reports, 2019, 8: 1-8. doi: 10.1007/s13669-019-0254-x
    [6] SMITS G, HOLZGREVE W, HAHN S. An examination of different Percoll density gradients and magnetic activated cell sorting (MACS) for the enrichment of fetal erythroblasts from maternal blood[J]. Archives of Gynecology and Obstetrics, 2000, 263(4): 160-163. doi: 10.1007/s004040050273
    [7] LIANG H, CHEN G J, YU Y, et al. Progress in isolation and enrichment of fetal nucleated read blood cells from maternal peripheral blood[J]. Chinese Journal of Cell and Stem Cell (Electronic Edition), 2018, 8(1): 53-58. (in Chinese)
    [8] JANSEN M W J C, VON LINDERN M, BEUG H, et al. The use of in vitro expanded erythroid cells in a model system for the isolation of fetal cells from maternal blood[J]. Prenatal Diagnosis, 1999, 19(4): 323-329. doi: 10.1002/(SICI)1097-0223(199904)19:4<323::AID-PD534>3.0.CO;2-A
    [9] ZHANG H M, YANG Y Y, LI X R, et al. Frequency-enhanced transferrin receptor antibody-labelled microfluidic chip (FETAL-Chip) enables efficient enrichment of circulating nucleated red blood cells for non-invasive prenatal diagnosis[J]. Lab on a Chip, 2018, 18(18): 2749-2756. doi: 10.1039/C8LC00650D
    [10] WU X M, QUAN ZH B. Fundamentals of Clinical Laboratory[M]. Wuhan: Huazhong University of Science and Technology Press, 2013. (in Chinese)
    [11] LI L, SCHEIGER J M, LEVKIN P A. Design and applications of photoresponsive hydrogels[J]. Advanced Materials, 2019, 31(26): 1807333. doi: 10.1002/adma.201807333
    [12] LV S W, LIU Y, XIE M, et al. Near-infrared light-responsive hydrogel for specific recognition and photothermal site-release of circulating tumor cells[J]. ACS Nano, 2016, 10(6): 6201-6210. doi: 10.1021/acsnano.6b02208
    [13] XIA W, YUE B H. Clinical Hematological Examination[M]. Wuhan: Huazhong University of Science and Technology Press, 2014. (in Chinese)
    [14] XIAO Z X. Engineering Optical Design[M]. Beijing: Publishing House of Electronics Industry, 2003. (in Chinese)
    [15] MA L, CHEN H J, LEI T, et al. Research on reference ranges of anemia related detection indicators in pregnant period[J]. Laboratory Medicine and Clinic, 2016, 13(1): 6-7, 10. (in Chinese) doi: 10.3969/j.issn.1672-9455.2016.01.003
    [16] HUANG ZH W, FONG CH Y, GAUTHAMAN K, et al. Novel approaches to manipulating foetal cells in the maternal circulation for non-invasive prenatal diagnosis of the unborn child[J]. Journal of Cellular Biochemistry, 2011, 112(6): 1475-1485. doi: 10.1002/jcb.23084
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  361
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-02-22
  • 网络出版日期:  2021-05-15
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回