留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Formation mechanism of the continuous spectral profile of lightning plasma

DONG Xiang-cheng WANG Guo-wei CHEN Jian-hong

董向成, 王国伟, 陈建宏. 闪电等离子体连续光谱轮廓形成机理研究[J]. 中国光学(中英文), 2021, 14(5): 1243-1250. doi: 10.37188/CO.2021-0018
引用本文: 董向成, 王国伟, 陈建宏. 闪电等离子体连续光谱轮廓形成机理研究[J]. 中国光学(中英文), 2021, 14(5): 1243-1250. doi: 10.37188/CO.2021-0018
DONG Xiang-cheng, WANG Guo-wei, CHEN Jian-hong. Formation mechanism of the continuous spectral profile of lightning plasma[J]. Chinese Optics, 2021, 14(5): 1243-1250. doi: 10.37188/CO.2021-0018
Citation: DONG Xiang-cheng, WANG Guo-wei, CHEN Jian-hong. Formation mechanism of the continuous spectral profile of lightning plasma[J]. Chinese Optics, 2021, 14(5): 1243-1250. doi: 10.37188/CO.2021-0018

闪电等离子体连续光谱轮廓形成机理研究

详细信息
  • 中图分类号: O433

Formation mechanism of the continuous spectral profile of lightning plasma

doi: 10.37188/CO.2021-0018
Funds: Supported by the National Natural Science Foundation of China (No. 12064023); Lanzhou Science and Technology Development Guidance Plan Project (No. 2019-ZD-172)
More Information
    Author Bio:

    DONG Xiang-cheng (1975—), male, born in Baiyin City, Gansu province, Associate professor, BaiLie School of Petroleum Engineering, Lanzhou City University. His research interests are on the low temperature plasma and lightning physics. E-mail: dongxiangc@tom.com

    CHEN Jian-hong (1982—), male, born in Pingliang City, Gansu province, Doctor, Professor, School of Electronic and Information Engineering, Lanzhou City University. His research interests are on the plasma physics, and the atomic and molecular physics. E-mail: chenyuwen1982@163.com

    Corresponding author: dongxiangc@tom.com
  • 摘要: 利用光谱范围为400~1000 nm的无狭缝光栅光谱仪记录了云对地闪电放电光谱,在可见光谱的低频段观测到丰富的一价氮离子谱线,没有明显观测到其他重要的离子谱线。闪电通道内大量电子在电场作用下向地面倾泻使通道快速加热,沿通道径向温度降低,通道表面附近氮离子与电子的相互作用增强从而产生连续辐射。闪电的连续辐射机制主要包括轫致辐射和复合辐射,对应于氮离子与自由电子的库仑碰撞和对自由电子的捕获。当等离子体温度低于10000 K时,轫致连续辐射谱为平坦谱,其对连续谱在可见光范围内的轮廓特征没有明显影响。复合辐射方面,以类氢离子经典辐射理论为基础,引入非类氢的复杂离子近似计算方法,用Gaunt因子进行量子力学修正,分析氮离子的复合辐射过程。据此导出连续光谱复合辐射系数与波长的函数关系,由关系式绘制氮等离子体连续辐射光谱的特征曲线,与闪电连续光谱观测结果进行比较,发现等离子体表面电子温度与连续辐射光谱谱峰的位置密切相关;引入氮离子的有效核电荷数Z*对连续谱的阶跃特征和谱翼展宽特性有显著影响。对比发现,当Z*为3时,理论曲线与连续光谱的轮廓特征高度一致。Z*的取值范围由离子种类决定,有效荷电荷数Z*能很好地解释闪电等离子体在给定波长下连续光谱的阶跃特征。

     

  • Figure 1.  Images of time-sharing lightning beam

    Figure 2.  Spectra of the lightning beam at different heights from the ground

    Figure 3.  Effect of Tex and Z* on the profile features of the continuous spectra

    Figure 4.  Comparison between the experimental and theoretical profile features of the continuous spectra (Z*=3)

  • [1] SU F M, ZHANG D, LIANG F. Progress in preparation and modification of nano-catalytic materials by low-temperature plasma[J]. Chinese Journal of Applied Chemistry, 2019, 36(8): 882-891. (in Chinese) doi: 10.11944/j.issn.1000-0518.2019.08.190126
    [2] LI H P, YU D R, SUN W T, et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727. (in Chinese)
    [3] ZHANG H M, ZHANG Y J, LV W T, et al. The spectra characteristic of altitude triggered lightning channel[J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3673-3677. (in Chinese)
    [4] CHEN H, LI L Y, ZHANG B, et al. Assessment of Q-K model for nitrogen and oxygen dissociation-recombination[J]. Acta Aerodynamica Sinica, 2018, 36(1): 17-21. (in Chinese) doi: 10.7638/kqdlxxb-2015.0189
    [5] LI L, REN H M, WEI B H, et al. V-N Co-doped mesoporous carbon nanomaterials as catalysts for artificial N2 reduction[J]. Chinese Journal of Applied Chemistry, 2020, 37(8): 930-938. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.00.200037
    [6] FU B Q, HOU Q, WANG J, et al. Molecular dynamics study of trapping and detrapping process of hydrogen in tungsten vacancy[J]. Acta Physica Sinica, 2019, 68(24): 240201. (in Chinese) doi: 10.7498/aps.68.20190701
    [7] CRESSAULT Y, GLEIZES A. Thermal plasma properties for Ar–Al, Ar–Fe and Ar–Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure[J]. Journal of Physics D:Applied Physics, 2013, 46(41): 415206. doi: 10.1088/0022-3727/46/41/415206
    [8] IORDANOVA E, DE VRIES N, GUILLEMIER M, et al. Absolute measurements of the continuum radiation to determine the electron density in a microwave-induced argon plasma[J]. Journal of Physics D:Applied Physics, 2008, 41(1): 015208. doi: 10.1088/0022-3727/41/1/015208
    [9] PARK S, CHOE W, YOUN MOON S, et al. Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas[J]. Applied Physics Letters, 2014, 104(8): 084103. doi: 10.1063/1.4866804
    [10] KUNZE H J. Introduction to Plasma Spectroscopy[M]. Heidelberg Berlin: Springer, 2009.
    [11] VAN HOOF P A M, FERLAND G J, WILLIAMS R J R, et al. Accurate determination of the free-free Gaunt factor-Ⅱ. Relativistic Gaunt factors[J]. Monthly Notices of the Royal Astronomical Society, 2015, 449(2): 2112-2118. doi: 10.1093/mnras/stv404
    [12] ZHANG ZH F, YANG ZH, REN W J, et al. Condition detection in Al alloy welding process based on deep mining of arc spectrum[J]. Transactions of the China Welding Institution, 2019, 40(1): 19-25. (in Chinese) doi: 10.12073/j.hjxb.2019400005
    [13] ZHANG H, HE J P, LINYANG SH L. Three-dimensional arc spectrum and anti-interference decoupling in micro plasma arc welding[J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 48-53. (in Chinese)
    [14] LIU Y F, DING Y J, PENG ZH M, et al. Spectroscopic study on the time evolution behaviors of the laser-induced breakdown air plasma[J]. Acta Physica Sinica, 2014, 63(20): 205205. (in Chinese) doi: 10.7498/aps.63.205205
    [15] ZHANG M, YUAN P, LIU G R, et al. The current variation along the discharge channel in cloud-to-ground lightning[J]. Atmospheric Research, 2019, 225: 121-130. doi: 10.1016/j.atmosres.2019.04.001
    [16] WANG F, LI H, YANG K, et al. Tungsten inert gas welding arc radiation and its role in energy balance[J]. Acta Optica Sinica, 2018, 38(7): 0726001. (in Chinese) doi: 10.3788/AOS201838.0726001
    [17] ZHANG H M, LV W T, ZHANG Y, et al. Analysis of radiation evolution characteristics of the artificial triggered lightning channel[J]. Chinese Optics, 2019, 12(3): 670-676. (in Chinese) doi: 10.3788/co.20191203.0670
    [18] DONG X CH, CHEN J H, WEI X F, et al. Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology, 2017, 19(12): 125304. doi: 10.1088/2058-6272/aa8acb
    [19] DONG X CH, YUAN P. Calculating the electron temperature of lightning channel based on the continuous radiation[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1209-1212. (in Chinese)
  • 加载中
图(4)
计量
  • 文章访问数:  1309
  • HTML全文浏览量:  485
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-03-18
  • 网络出版日期:  2021-04-30
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回