留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

范德华尔斯材料在转角光学中的研究进展

郑嘉璐 戴志高 胡光维 欧清东 张津瑞 甘雪涛 仇成伟 鲍桥梁

郑嘉璐, 戴志高, 胡光维, 欧清东, 张津瑞, 甘雪涛, 仇成伟, 鲍桥梁. 范德华尔斯材料在转角光学中的研究进展[J]. 中国光学(中英文), 2021, 14(4): 812-822. doi: 10.37188/CO.2021-0023
引用本文: 郑嘉璐, 戴志高, 胡光维, 欧清东, 张津瑞, 甘雪涛, 仇成伟, 鲍桥梁. 范德华尔斯材料在转角光学中的研究进展[J]. 中国光学(中英文), 2021, 14(4): 812-822. doi: 10.37188/CO.2021-0023
ZHENG Jia-lu, DAI Zhi-gao, HU Guang-wei, OU Qing-dong, ZHANG Jin-rui, GAN Xue-tao, QIU Cheng-wei, BAO Qiao-liang. Twisted van der Waals materials for photonics[J]. Chinese Optics, 2021, 14(4): 812-822. doi: 10.37188/CO.2021-0023
Citation: ZHENG Jia-lu, DAI Zhi-gao, HU Guang-wei, OU Qing-dong, ZHANG Jin-rui, GAN Xue-tao, QIU Cheng-wei, BAO Qiao-liang. Twisted van der Waals materials for photonics[J]. Chinese Optics, 2021, 14(4): 812-822. doi: 10.37188/CO.2021-0023

范德华尔斯材料在转角光学中的研究进展

基金项目: 深圳市南山区“领航计划”(No. LHTD20170006);陕西省自然科学基础研究计划 (No. 2021JQ-603)
详细信息
    作者简介:

    郑嘉璐(1991—),男,陕西西安人,博士,硕士生导师。研究方向为纳米材料的光电性能研究及在光电器件中的应用。2009年入读中南大学材料学院,并参与中南大学与澳大利亚蒙纳士大学“2+2”联合培养项目;2014年同获两校学士学位;2014年以博士全额奖学金入读蒙纳士大学材料科学与工程学院;2018年获蒙纳士大学博士学位;2019年7月入职西安石油大学。已在Angewandte Chemie、ACS Applied Materials & Interfaces、Nanoscale等期刊上发表论文7篇;Email:zhengjialu_xsy@163.com

    仇成伟(1981—),男,浙江嘉兴人,新加坡国立大学电子与计算机工程系的副教授(tenure),工学院“院长讲席教授”。研究方向为电磁散射理论,结构表面和结构光场,以及光力操控,(光学、声学、热学)超材料与超表面,低维材料光电子材料与器件。已在Science,Nature,Nature Nanotechnology,Nature Materials,Nature Photonics,Light:Science and Applications,PNAS,PRL等期刊发表论文300余篇。2019年与2020年Clarivate Analytics高被引学者。现任eLight杂志(Springer Nature 和长春光机所联合创办)创刊主编。Email:chengwei.qiu@nus.edu.sg

    鲍桥梁(1979—),男,湖北黄冈人,2016年受聘为蒙纳士大学材料科学与工程系副教授(tenure),入选澳大利亚科研委员会“未来研究员”奖励计划。致力于研究石墨烯光子学和光电子器件,以及受限空间的光与物质相互作用与极化激元(等离子体极化激元、激子极化激元和声子极化激元等),研究工作曾入选“2018中国光学十大进展(基础研究类)”和Physics World网站2020年度“世界物理十大突破”。已在Nature,Nature Materials,Nature Photonics,Nature Chemistry,Light:Science and Applications,Nature Communications等期刊发表论文200余篇,2018至2020年连续入选Clarivate Analytics高被引学者。Email:qiaoliang.bao@gmail.com

  • 中图分类号: O472+.3

Twisted van der Waals materials for photonics

Funds: Supported by Shenzhen Nanshan District Pilotage Team Program (No. LHTD20170006); the Natural Science Foundation Research Project of Shaanxi Province (No. 2021JQ-603)
More Information
  • 摘要: 极化激元是光与不同极化子相互作用形成的半光半物质的准粒子,可用于亚波长尺度的光场调控,在光学成像、非线性效应增强及新型超构材料设计等领域扮演着举足重轻的角色。近年来,随着人们对转角范德华尔斯材料体系的制备工艺和物性研究的不断深入,其中许多新奇的极化激元现象也被揭示。本文综述了近年来转角范德华尔斯材料在光学领域的研究进展,包含转角石墨烯体系中的等离极化激元,转角二维过渡金属硫化物中的激子极化激元与六方氮化硼(h-BN)与 α-MoO3体系中的声子极化激元等。最后展望转角二维范德华尔斯材料中的极化激元在纳米尺度下光与物质相互作用的有效控制方面所展现的巨大潜力。

     

  • 图 1  (a)红外s-SNOM 测量转角双层石墨烯的示意图[15];(b)显示转角双层石墨烯中由孤子超晶格形成的光子晶体(左);转角双层石墨烯样品的TEM 暗场图像(右)[15];(c)石墨烯/h-BN 电子能带结构的三维模拟结构图[26]

    Figure 1.  (a) Schematic of the IR nano-imaging of twisted bilayer graphene (TBG). Reproduced with permission. Copyright 2018, Science (New York, N.Y.); (b) (Left) Visualizing the nano-light photonic crystal formed by the soliton lattice. (Right) Dark-field TEM image of a TBG sample. Reproduced with permission. Copyright 2018, Science (New York, N.Y.); (c) 3D representation of the electronic band structure of graphene/h-BN. Reproduced with permission. Copyright 2015, Nat Mater.

    图 2  (a)层间激子的莫尔电位[16];(b)K谷激子的空间图[16];(c)被困在莫尔电位中的激子示意图[17];(d)单层WSe2和WS2区域上测得的偏振相关的二次谐波信号图[18];(e)MoSe2/WS2的能带示意图[19];(f)MoSe2/WS2的光致发光图像[19]

    Figure 2.  (a) The moiré potential of the interlayer exciton transition. Reproduced with permission. Copyright 2019, Nature; (b) Spatial map of the optical selection rules for K-valley excitons. Reproduced with permission. Copyright 2019, Nature; (c) Schematic of an exciton trapped in a moiré potential site. Reproduced with permission. Copyright 2019, Nature; (d) The polarization-dependent second harmonic generation signal measured on the monolayer WSe2 and WS2. Reproduced with permission. Copyright 2019, Nature; (e) Schematic of the MoSe2/WS2 band structure; (f) The PL image of MoSe2/WS2. Reproduced with permission. Copyright 2019, Nature.

    图 3  (a)数值模拟显示转角α-MoO3晶体在固定频率下其能带面的拓扑变换;(b)s-SNOM 实验测试的近场图像显示双层α-MoO3转角体系中的拓扑变换[21]

    Figure 3.  (a) Numerically simulated field distributions of α-MoO3; (b) topological transformation of α-MoO3 measured by s-SNOM[21]. Reproduced with permission. Copyright 2020, Nature.

  • [1] DAI ZH G, HU G W, SI G Y, et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities[J]. Nature Communications, 2020, 11(1): 6086. doi: 10.1038/s41467-020-19913-4
    [2] MA W L, SHABBIR B, OU Q D, et al. Anisotropic polaritons in van der Waals materials[J]. InfoMat, 2020, 2(5): 777-790. doi: 10.1002/inf2.12119
    [3] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
    [4] BAO Q L, LOH K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694. doi: 10.1021/nn300989g
    [5] XIA F N, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907. doi: 10.1038/nphoton.2014.271
    [6] LOW T, CHAVES A, CALDWELL J D, et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 2017, 16(2): 182-194. doi: 10.1038/nmat4792
    [7] KHURGIN J B, SUN G. In search of the elusive lossless metal[J]. Applied Physics Letters, 2010, 96(18): 181102. doi: 10.1063/1.3425890
    [8] HU F, LUAN Y, SCOTT M E, et al. Imaging exciton–polariton transport in MoSe2 waveguides[J]. Nature Photonics, 2017, 11(6): 356-360. doi: 10.1038/nphoton.2017.65
    [9] CALDWELL J D, LINDSAY L, GIANNINI V, et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons[J]. Nanophotonics, 2015, 4(1): 44-68. doi: 10.1515/nanoph-2014-0003
    [10] HU G W, SHEN J L, QIU CH W, et al. Phonon polaritons and hyperbolic response in van der waals materials[J]. Advanced Optical Materials, 2020, 8(5): 1901393. doi: 10.1002/adom.201901393
    [11] CARR S, MASSATT D, FANG SH A, et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle[J]. Physical Review B, 2017, 95(7): 075420. doi: 10.1103/PhysRevB.95.075420
    [12] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84. doi: 10.1038/nature26154
    [13] CAO Y, FATEMI V, FANG SH A, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. doi: 10.1038/nature26160
    [14] JIANG L L, SHI ZH W, ZENG B, et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls[J]. Nature Materials, 2016, 15(8): 840-844. doi: 10.1038/nmat4653
    [15] SUNKU S S, NI G X, JIANG B Y, et al. Photonic crystals for nano-light in moiré graphene superlattices[J]. Science, 2018, 362(6419): 1153-1156. doi: 10.1126/science.aau5144
    [16] TRAN K, MOODY G, WU F CH, et al. Evidence for moire excitons in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 71-75. doi: 10.1038/s41586-019-0975-z
    [17] SEYLER K L, RIVERA P, YU H Y, et al. Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers[J]. Nature, 2019, 567(7746): 66-70. doi: 10.1038/s41586-019-0957-1
    [18] JIN CH H, REGAN E C, YAN A M, et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices[J]. Nature, 2019, 567(7746): 76-80. doi: 10.1038/s41586-019-0976-y
    [19] ALEXEEV E M, RUIZ-TIJERINA D A, DANOVICH M, et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 81-86. doi: 10.1038/s41586-019-0986-9
    [20] NI G X, WANG H, JIANG B Y, et al. Soliton superlattices in twisted hexagonal boron nitride[J]. Nature Communications, 2019, 10(1): 4360. doi: 10.1038/s41467-019-12327-x
    [21] HU G W, OU Q D, SI G Y, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 2020, 582(7811): 209-213. doi: 10.1038/s41586-020-2359-9
    [22] MA W L, ALONSO-GONZÁLEZ P, LI SH J, et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J]. Nature, 2018, 562(7728): 557-562. doi: 10.1038/s41586-018-0618-9
    [23] ZHENG Z B, XU N SH, OSCURATO S L, et al. A mid-infrared biaxial hyperbolic van der Waals crystal[J]. Science Advances, 2019, 5(5): eaav8690. doi: 10.1126/sciadv.aav8690
    [24] WU Y J, OU Q D, YIN Y F, et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation[J]. Nature Communications, 2020, 11(1): 2646. doi: 10.1038/s41467-020-16459-3
    [25] ALCARAZ IRANZO D, NANOT S, DIAS E J C, et al. Probing the ultimate plasmon confinement limits with a van der waals heterostructure[J]. Science, 2018, 360(6386): 291-295. doi: 10.1126/science.aar8438
    [26] NI G X, WANG H, WU J S, et al. Plasmons in graphene moiré superlattices[J]. Nature Materials, 2015, 14(12): 1217-1222. doi: 10.1038/nmat4425
    [27] FEI Z, RODIN A S, ANDREEV G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82-85. doi: 10.1038/nature11253
    [28] CHEN J N, BADIOLI M, ALONSO-GONZÁLEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81. doi: 10.1038/nature11254
    [29] WOESSNER A, LUNDEBERG M B, GAO Y D, et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nature Materials, 2015, 14(4): 421-425. doi: 10.1038/nmat4169
    [30] NI G X, WANG L, GOLDFLAM M D, et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene[J]. Nature Photonics, 2016, 10(4): 244-247. doi: 10.1038/nphoton.2016.45
    [31] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展[J]. 物理学报,2019,68(22):220303. doi: 10.7498/aps.68.20191317

    LÜ X Y, LI ZH Q. Topological properties of graphene moiré superlattice systems and recent optical studies[J]. Acta Physica Sinica, 2019, 68(22): 220303. (in Chinese) doi: 10.7498/aps.68.20191317
    [32] DAI ZH G, HU G W, OU Q D, et al. Artificial metaphotonics born naturally in two dimensions[J]. Chemical Reviews, 2020, 120(13): 6197-6246. doi: 10.1021/acs.chemrev.9b00592
    [33] SUN J B, ZHOU J, LI B, et al. Indefinite permittivity and negative refraction in natural material: graphite[J]. Applied Physics Letters, 2011, 98(10): 101901. doi: 10.1063/1.3562033
    [34] JACOB Z, ALEKSEYEV L V, NARIMANOV E. Optical hyperlens: far-field imaging beyond the diffraction limit[J]. Optics Express, 2006, 14(18): 8247-8256. doi: 10.1364/OE.14.008247
    [35] RHO J, YE Z L, XIONG Y, et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies[J]. Nature Communications, 2010, 1(1): 143. doi: 10.1038/ncomms1148
    [36] LU D, KAN J J, FULLERTON E E, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J]. Nature Nanotechnology, 2014, 9(1): 48-53. doi: 10.1038/nnano.2013.276
    [37] SHALAGINOV M Y, ISHII S, LIU J, et al. Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials[J]. Applied Physics Letters, 2013, 102(17): 173114. doi: 10.1063/1.4804262
    [38] SREEKANTH K V, BIAGLOW T, STRANGI G. Directional spontaneous emission enhancement in hyperbolic metamaterials[J]. Journal of Applied Physics, 2013, 114(13): 134306. doi: 10.1063/1.4824287
    [39] TUMKUR T, ZHU G, BLACK P, et al. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial[J]. Applied Physics Letters, 2011, 99(15): 151115. doi: 10.1063/1.3631723
    [40] NOGINOV M A, LI H, BARNAKOV Y A, et al. Controlling spontaneous emission with metamaterials[J]. Optics Letters, 2010, 35(11): 1863-1865. doi: 10.1364/OL.35.001863
    [41] WURTZ G A, POLLARD R, HENDREN W, et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality[J]. Nature Nanotechnology, 2011, 6(2): 107-111. doi: 10.1038/nnano.2010.278
    [42] KABASHIN A V, EVANS P, PASTKOVSKY S, et al. Plasmonic nanorod metamaterials for biosensing[J]. Nature Materials, 2009, 8(11): 867-871. doi: 10.1038/nmat2546
    [43] ALDEN J S, TSEN A W, HUANG P Y, et al. Strain solitons and topological defects in bilayer graphene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11256-11260. doi: 10.1073/pnas.1309394110
    [44] JIANG B Y, NI G X, ADDISON Z, et al. Plasmon reflections by topological electronic boundaries in bilayer graphene[J]. Nano Letters, 2017, 17(11): 7080-7085. doi: 10.1021/acs.nanolett.7b03816
    [45] FEI Z, RODIN A S, GANNETT W, et al. Electronic and plasmonic phenomena at graphene grain boundaries[J]. Nature Nanotechnology, 2013, 8(11): 821-825. doi: 10.1038/nnano.2013.197
    [46] SONG Y, DERY H. Transport theory of monolayer transition-metal dichalcogenides through symmetry[J]. Physical Review Letters, 2013, 111(2): 026601. doi: 10.1103/PhysRevLett.111.026601
    [47] JU L, SHI ZH W, NAIR N, et al. Topological valley transport at bilayer graphene domain walls[J]. Nature, 2015, 520(7549): 650-655. doi: 10.1038/nature14364
    [48] HU G W, KRASNOK A, MAZOR Y, et al. Moiré hyperbolic metasurfaces[J]. Nano Letters, 2020, 20(5): 3217-3224. doi: 10.1021/acs.nanolett.9b05319
    [49] 张子洁, 梁瑜章, 徐挺. 双曲超材料及超表面研究进展[J]. 光电工程,2017,44(3):276-288. doi: 10.3969/j.issn.1003-501X.2017.03.002

    ZHANG Z J, LIANG Y ZH, XU T. Research advances of hyperbolic metamaterials and metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 276-288. (in Chinese) doi: 10.3969/j.issn.1003-501X.2017.03.002
    [50] HIGH A A, DEVLIN R C, DIBOS A, et al. Visible-frequency hyperbolic metasurface[J]. Nature, 2015, 522(7555): 192-196. doi: 10.1038/nature14477
    [51] GOMEZ-DIAZ J S, TYMCHENKO M, ALÙ A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces[J]. Physical Review Letters, 2015, 114(23): 233901. doi: 10.1103/PhysRevLett.114.233901
    [52] CORREAS-SERRANO D, GOMEZ-DIAZ J S, MELCON A A, et al. Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization[J]. Journal of Optics, 2016, 18(10): 104006. doi: 10.1088/2040-8978/18/10/104006
    [53] LI P N, DOLADO I, ALFARO-MOZAZ F J, et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 2018, 359(6378): 892-896. doi: 10.1126/science.aaq1704
    [54] NEMILENTSAU A, LOW T, HANSON G. Anisotropic 2D materials for tunable hyperbolic plasmonics[J]. Physical Review Letters, 2016, 116(6): 066804. doi: 10.1103/PhysRevLett.116.066804
    [55] GOMEZ-DIAZ J S, ALÙ A. Flatland optics with hyperbolic metasurfaces[J]. ACS Photonics, 2016, 3(12): 2211-2224. doi: 10.1021/acsphotonics.6b00645
    [56] BELASHCHENKO K D, VAN SCHILFGAARDE M, ANTROPOV V P. Coexistence of covalent and metallic bonding in the boron intercalation superconductor MgB2[J]. Physical Review B, 2001, 64(9): 092503. doi: 10.1103/PhysRevB.64.092503
    [57] GURITANU V, KUZMENKO A B, Van Der MAREL D, et al. Anisotropic optical conductivity and two colors of MgB2[J]. Physical Review B, 2006, 73(10): 104509. doi: 10.1103/PhysRevB.73.104509
    [58] NEE T W. Anisotropic optical properties of YBa2Cu3O7[J]. Journal of Applied Physics, 1992, 71(12): 6002-6007. doi: 10.1063/1.350454
    [59] KORZEB K, GAJC M, PAWLAK D A. Compendium of natural hyperbolic materials[J]. Optics Express, 2015, 23(20): 25406-25424. doi: 10.1364/OE.23.025406
    [60] SUN J B, LITCHINITSER N M, ZHOU J. Indefinite by nature: from ultraviolet to terahertz[J]. ACS Photonics, 2014, 1(4): 293-303. doi: 10.1021/ph4000983
    [61] CALDWELL J D, KRETININ A V, CHEN Y G, et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride[J]. Nature Communications, 2014, 5(1): 5221. doi: 10.1038/ncomms6221
    [62] ALEKSEYEV L V, PODOLSKIY V A, NARIMANOV E E. Homogeneous hyperbolic systems for terahertz and far-infrared frequencies[J]. Advances in OptoElectronics, 2012, 2012: 267564.
    [63] GUPTA A, SAKTHIVEL T, SEAL S. Recent development in 2D materials beyond graphene[J]. Progress in Materials Science, 2015, 73: 44-126. doi: 10.1016/j.pmatsci.2015.02.002
    [64] LOW T, ROLDÁN R, WANG H, et al. Plasmons and screening in monolayer and multilayer black phosphorus[J]. Physical Review Letters, 2014, 113(10): 106802. doi: 10.1103/PhysRevLett.113.106802
    [65] RODIN A S, CARVALHO A, CASTRO NETO A H. Strain-induced gap modification in black phosphorus[J]. Physical Review Letters, 2014, 112(17): 176801. doi: 10.1103/PhysRevLett.112.176801
    [66] LOW T, RODIN A S, CARVALHO A, et al. Tunable optical properties of multilayer black phosphorus thin films[J]. Physical Review B, 2014, 90(7): 075434. doi: 10.1103/PhysRevB.90.075434
    [67] LIU Z ZH, AYDIN K. Localized surface plasmons in nanostructured monolayer black phosphorus[J]. Nano Letters, 2016, 16(6): 3457-3462. doi: 10.1021/acs.nanolett.5b05166
    [68] CAO Y, CHOWDHURY D, RODAN-LEGRAIN D, et al. Strange metal in magic-angle graphene with near planckian dissipation[J]. Physical Review Letters, 2020, 124(7): 076801. doi: 10.1103/PhysRevLett.124.076801
    [69] NEUNER III B, KOROBKIN D, FIETZ C, et al. Midinfrared index sensing of pL-scale analytes based on surface phonon polaritons in silicon carbide[J]. The Journal of Physical Chemistry C, 2010, 114(16): 7489-7491. doi: 10.1021/jp9114139
    [70] DAI S, FEI Z, MA Q, et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride[J]. Science, 2014, 343(6175): 1125-1129. doi: 10.1126/science.1246833
    [71] LI P N, LEWIN M, KRETININ A V, et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing[J]. Nature Communications, 2015, 6(1): 7507. doi: 10.1038/ncomms8507
    [72] LI P, DOLADO I, ALFARO-MOZAZ F J, et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der waals materials[J]. Nano Letters, 2017, 17(1): 228-235. doi: 10.1021/acs.nanolett.6b03920
    [73] LI P N, HU G W, DOLADO I, et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization[J]. Nature Communications, 2020, 11(1): 3663. doi: 10.1038/s41467-020-17425-9
    [74] LI N, GUO X D, YANG X X, et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride[J]. Nature Materials, 2021, 20(1): 43-48. doi: 10.1038/s41563-020-0763-z
    [75] HU H, YANG X X, ZHAI F, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J]. Nature Communications, 2016, 7(1): 12334. doi: 10.1038/ncomms12334
    [76] HU D B, YANG X X, LI CH, et al. Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging[J]. Nature Communications, 2017, 8(1): 1471. doi: 10.1038/s41467-017-01580-7
    [77] HU D B, CHEN K, CHEN X ZH, et al. Tunable modal birefringence in a low-loss van der waals waveguide[J]. Advanced Materials, 2019, 31(27): 1807788. doi: 10.1002/adma.201807788
    [78] HU H, YANG X X, GUO X D, et al. Gas identification with graphene plasmons[J]. Nature Communications, 2019, 10(1): 1131. doi: 10.1038/s41467-019-09008-0
    [79] GUO X D, LIU R N, HU D B, et al. Efficient all-optical plasmonic modulators with atomically thin van der waals heterostructures[J]. Advanced Materials, 2020, 32(11): 1907105. doi: 10.1002/adma.201907105
    [80] YANG X X, ZHAI F, HU H, et al. Far-field spectroscopy and near-field optical imaging of coupled Plasmon-phonon polaritons in 2D van der waals heterostructures[J]. Advanced Materials, 2016, 28(15): 2931-2938. doi: 10.1002/adma.201505765
    [81] BELOV P A, SIMOVSKI C R, IKONEN P. Canalization of subwavelength images by electromagnetic crystals[J]. Physical Review B, 2005, 71(19): 193105. doi: 10.1103/PhysRevB.71.193105
    [82] KRISHNAMOORTHY H N S, JACOB Z, NARIMANOV E, et al. Topological transitions in metamaterials[J]. Science, 2012, 336(6078): 205-209. doi: 10.1126/science.1219171
    [83] KEILMANN F, HILLENBRAND R. Near-field microscopy by elastic light scattering from a tip[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences, 2004, 362(1817): 787-805. doi: 10.1098/rsta.2003.1347
    [84] SHVETS G, TRENDAFILOV S, PENDRY J B, et al. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays[J]. Physical Review Letters, 2007, 99(5): 053903. doi: 10.1103/PhysRevLett.99.053903
    [85] LI ZH Y, LIN L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction[J]. Physical Review B, 2003, 68(24): 245110. doi: 10.1103/PhysRevB.68.245110
  • 加载中
图(3)
计量
  • 文章访问数:  1921
  • HTML全文浏览量:  582
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 修回日期:  2021-02-26
  • 网络出版日期:  2021-05-08
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回