留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工原子间耦合:超构表面调控电磁波的新自由度

林婧 李琦 邱孟 何琼 周磊

林婧, 李琦, 邱孟, 何琼, 周磊. 人工原子间耦合:超构表面调控电磁波的新自由度[J]. 中国光学(中英文), 2021, 14(4): 717-735. doi: 10.37188/CO.2021-0030
引用本文: 林婧, 李琦, 邱孟, 何琼, 周磊. 人工原子间耦合:超构表面调控电磁波的新自由度[J]. 中国光学(中英文), 2021, 14(4): 717-735. doi: 10.37188/CO.2021-0030
LIN Jing, LI Qi, QIU Meng, HE Qiong, ZHOU Lei. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 2021, 14(4): 717-735. doi: 10.37188/CO.2021-0030
Citation: LIN Jing, LI Qi, QIU Meng, HE Qiong, ZHOU Lei. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 2021, 14(4): 717-735. doi: 10.37188/CO.2021-0030

人工原子间耦合:超构表面调控电磁波的新自由度

基金项目: 国家自然科学基金项目(No. 11674068,No. 11734007,No. 91850101)
详细信息
    作者简介:

    周 磊(1972—),男,山东泰安人,教授,博士生导师,1992年,1997年于复旦大学分别获学士,博士学位,主要从事磁性材料,超构材料,光子晶体和等离激元领域等方向的研究。Email:phzhou@fudan.edu.cn

  • 中图分类号: O439

Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves

Funds: Supported by National Natural Science Foundation of China (No. 11674068, No. 11734007, No. 91850101)
More Information
  • 摘要: 近年来,纳米光学体系中共振体间耦合引起了人们的广泛关注。相对于单一光子共振结构体系,由多个光子共振体组成的复杂耦合体系有着更大的调控自由度和更令人着迷的现象。然而,相比人们在实验方面取得的进步,对于耦合问题的理论描述仍远未令人满意。本文从少体问题到周期性超构表面,从光子封闭体系到开放体系,系统介绍了多种处理共振体间耦合的理论工具,以及如何利用这些工具设计具有特定电磁波调控功能的新型超构表面。本文将着重展示本研究团队近些年在这一领域的研究进展,为相关领域研究人员提供指引与参考。

     

  • 图 1  常见人工原子结构及其光学响应[23]

    Figure 1.  Typical Meta-atoms structures and their optical response[23]

    图 2  非对称介质光子共振体耦合结构[32-35]

    Figure 2.  Asymmetric dielectric resonators[32-35]

    图 3  常用理论研究方法。(a)离散偶极近似法[37];(b) LC等效电路模型[39]; (c) Fano理论[41];(d) 耦合模理论

    Figure 3.  Theoretical methods. (a) Discrete dipole approximation[37]; (b) LC equivalent circuit model[39]; (c) Fano theory[41]; (d) coupled mode theory

    图 4  (a)光子晶体能带与(b-c)本征波函数场分布[50]

    Figure 4.  (a) Computed band structure and (b-c) visualizations of two field components[50]

    图 5  (a) 归一化方法;(b) 光子紧束缚理论的数值验证[51]

    Figure 5.  (a) Normalization method; (b) numerical verification of generalized TBM[51]

    图 6  (a) 两体耦合示意图;(b)数值验证等效模型;(c) 通过调制耦合实现慢波系统[52]

    Figure 6.  (a) Schematic diagram of the coupling system; (b) numerical verification of the effective model; (c) realization of an ultraslow-wave plasmon transport by modulation coupling[52]

    图 7  开口环阵列的角度色散现象[56]

    Figure 7.  Angular dispersion of the SRR array[56]

    图 8  基于调制耦合与辐射实现的 (a)无角度色散全吸收器件;(b)角度选择性的全吸收器件;(c)角度依赖的多功能偏振调控器件;(d)非均匀超表面的角度依赖双功能波前调控器件[59]

    Figure 8.  (a) Incident-angle-insensitive meta-absorber;(b) incident-angle-selective meta-absorber ; (c) angle-multiplexed meta-polarizer ;(d) angle-multiplexed wavefront controller based on modulation coupling and radiation[59]

    图 9  (a)泄露本征模式的获取方式与(b)近远场分离

    Figure 9.  (a) The way to obtain the leaky eigen mode and (b) separation of the near- and far-field

    图 10  不同体系的泄露本征模式与准模的对比[65]

    Figure 10.  Comparisons of LEM and QNM for different systems[65]

    图 11  通过控制复杂光子体系的耦合强度实现对谱线线形的自由调控与完全“暗”模式的构建[65]

    Figure 11.  Tailoring of the lineshapes of the coupled plasmonic and achieving BIC by modulating the coupling strength between the resonators[65]

  • [1] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.
    [2] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966
    [3] FANG N, LEE H, SUN CH, et al. Sub–diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759
    [4] CAI W SH, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials[J]. Nature Photonics, 2007, 1(4): 224-227. doi: 10.1038/nphoton.2007.28
    [5] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [6] CHEN W T, YANG K Y, WANG C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230. doi: 10.1021/nl403811d
    [7] YIN X B, YE Z L, RHO J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407. doi: 10.1126/science.1231758
    [8] ZHANG X Q, TIAN ZH, YUE W SH, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567-4572. doi: 10.1002/adma.201204850
    [9] KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J]. Science, 2017, 358(6367): eaam8100. doi: 10.1126/science.aam8100
    [10] SUN W J, HE Q, SUN SH L, et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light:Science &Applications, 2016, 5(1): e16003.
    [11] MAIER S A, KIK P G, ATWATER H A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J]. Nature Materials, 2003, 2(4): 229-232. doi: 10.1038/nmat852
    [12] MAIER S A, KIK P G, SWEATLOCK L A, et al. Energy transport in metal nanoparticle plasmon waveguides[J]. MRS Online Proceedings Library, 2003, 777(1): 71.
    [13] LIU N, LANGGUTH L, WEISS T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 2009, 8(9): 758-762. doi: 10.1038/nmat2495
    [14] BAO K, MIRIN N A, NORDLANDER P. Fano resonances in planar silver nanosphere clusters[J]. Applied Physics A, 2010, 100(2): 333-339. doi: 10.1007/s00339-010-5861-3
    [15] PRODAN E, RADLOFF C, HALAS N J, et al. A hybridization model for the plasmon response of complex nanostructures[J]. Science, 2003, 302(5644): 419-422. doi: 10.1126/science.1089171
    [16] LIU H, LIU Y M, LI T, et al. Coupled magnetic plasmons in metamaterials[J]. Physica Status Solidi (B), 2009, 246(7): 1397-1406. doi: 10.1002/pssb.200844414
    [17] FUNSTON A M, NOVO C, DAVIS T J, et al. Plasmon coupling of gold nanorods at short distances and in different geometries[J]. Nano Letters, 2009, 9(4): 1651-1658. doi: 10.1021/nl900034v
    [18] NORDLANDER P, OUBRE C, PRODAN E, et al. Plasmon hybridization in nanoparticle dimers[J]. Nano Letters, 2004, 4(5): 899-903. doi: 10.1021/nl049681c
    [19] SUH W, WANG ZH, FAN SH H. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities[J]. IEEE Journal of Quantum Electronics, 2004, 40(10): 1511-1518. doi: 10.1109/JQE.2004.834773
    [20] FAN SH H, SUH W, JOANNOPOULOS J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 2003, 20(3): 569-572. doi: 10.1364/JOSAA.20.000569
    [21] GIANNINI V, FRANCESCATO Y, AMRANIA H, et al. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach[J]. Nano Letters, 2011, 11(7): 2835-2840. doi: 10.1021/nl201207n
    [22] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961, 124(6): 1866-1878. doi: 10.1103/PhysRev.124.1866
    [23] DING F, PORS A, BOZHEVOLNYI S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 2018, 81(2): 026401. doi: 10.1088/1361-6633/aa8732
    [24] JACKSON J D. Classical Electrodynamics[M]. 3rd ed. New York: Wiley, 1999.
    [25] PAPASIMAKIS N, FEDOTOV V A, MARINOV K, et al. Gyrotropy of a metamolecule: wire on a torus[J]. Physical Review Letters, 2009, 103(9): 093901. doi: 10.1103/PhysRevLett.103.093901
    [26] DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820. doi: 10.1002/adom.201400584
    [27] BOHREN C F, HUFFMAN D R. Absorption and Scattering of Light by Small Particles[M]. New York: John Wiley & Sons, 1983.
    [28] HOLLOWAY C L, KUESTER E F, BAKER-JARVIS J, et al. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2596-2603. doi: 10.1109/TAP.2003.817563
    [29] ZHAO Q, ZHOU J, ZHANG F L, et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 2009, 12(12): 60-69. doi: 10.1016/S1369-7021(09)70318-9
    [30] DEVLIN R C, KHORASANINEJAD M, CHEN W T, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473-10478. doi: 10.1073/pnas.1611740113
    [31] LIU N, LIU H, ZHU SH N, et al. Stereometamaterials[J]. Nature Photonics, 2009, 3(3): 157-162. doi: 10.1038/nphoton.2009.4
    [32] BARANOV D G, MAKAROV S V, KRASNOK A E, et al. Tuning of near-and far-field properties of all‐dielectric dimer nanoantennas via ultrafast electron-hole plasma photoexcitation[J]. Laser &Photonics Reviews, 2016, 10(6): 1009-1015.
    [33] PANIAGUA-DOMÍNGUEZ R, YU Y F, KHAIDAROV E, et al. A metalens with a near-unity numerical aperture[J]. Nano Letters, 2018, 18(3): 2124-2132. doi: 10.1021/acs.nanolett.8b00368
    [34] ZHANG F, PU M B, LI X, et al. All‐dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions[J]. Advanced Functional Materials, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295
    [35] LUO X G. Subwavelength artificial structures: opening a new era for engineering optics[J]. Advanced Materials, 2019, 31(4): 1804680. doi: 10.1002/adma.201804680
    [36] DRAINE B T, FLATAU P J. Discrete-dipole approximation for scattering calculations[J]. Journal of the Optical Society of America A, 1994, 11(4): 1491-1499. doi: 10.1364/JOSAA.11.001491
    [37] KELLY K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677. doi: 10.1021/jp026731y
    [38] MONTICONE F, ALÙ A. Metamaterial, plasmonic and nanophotonic devices[J]. Reports on Progress in Physics, 2017, 80(3): 036401. doi: 10.1088/1361-6633/aa518f
    [39] ENGHETA N, SALANDRINO A, ALV A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors[J]. Physical Review Letters, 2005, 95(9): 095504.
    [40] SHI J W, MONTICONE F, ELIAS S, et al. Modular assembly of optical nanocircuits[J]. Nature Communications, 2014, 5: 3896. doi: 10.1038/ncomms4896
    [41] RYBIN M V, FILONOV D S, BELOV P A, et al. Switching from visibility to invisibility via Fano resonances: theory and experiment[J]. Scientific Reports, 2015, 5(1): 1-6.
    [42] LIMONOV M F, RYBIN M V, PODDUBNY A N, et al. Fano resonances in photonics[J]. Nature Photonics, 2017, 11(9): 543-554. doi: 10.1038/nphoton.2017.142
    [43] JOANNOPOULOS J D, JOHNSON S G, WINN J N, et al.. Photonic Crystals: Molding the Flow of Light[M]. 2nd ed. Princeton: Princeton University Press, 2008, .
    [44] GUPTA V P. Principles and Applications of Quantum Chemistry[M]. Amsterdam: Academic Press, 2016.
    [45] LIDORIKIS E, SIGALAS M M, ECONOMOU E N, et al. Tight-binding parametrization for photonic band gap materials[J]. Physical Review Letters, 1998, 81(7): 1405.
    [46] HARA Y, MUKAIYAMA T, TAKEDA K, et al. Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres[J]. Physical Review Letters, 2005, 94(20): 203905. doi: 10.1103/PhysRevLett.94.203905
    [47] NOTOMI M, KURAMOCHI E, TANABE T. Large-scale arrays of ultrahigh-Q coupled nanocavities[J]. Nature Photonics, 2008, 2(12): 741-747. doi: 10.1038/nphoton.2008.226
    [48] BUSCH K, MINGALEEV S F, GARCIA-MARTIN A, et al. The Wannier function approach to photonic crystal circuits[J]. Journal of Physics:Condensed Matter, 2003, 15(30): R1233-R1256. doi: 10.1088/0953-8984/15/30/201
    [49] LEUENBERGER D, FERRINI R, HOUDRÉ R. Ab initio tight-binding approach to photonic-crystal based coupled cavity waveguides[J]. Journal of Applied Physics, 2004, 95(3): 806-809. doi: 10.1063/1.1635668
    [50] RAMAN A, FAN SH H. Photonic band structure of dispersive metamaterials formulated as a Hermitian eigenvalue problem[J]. Physical Review Letters, 2010, 104(8): 087401. doi: 10.1103/PhysRevLett.104.087401
    [51] XI B, XU H, XIAO SH Y, et al. Theory of coupling in dispersive photonic systems[J]. Physical Review B, 2011, 83(16): 165115. doi: 10.1103/PhysRevB.83.165115
    [52] XI B, QIU M, XIAO SH Y, et al. Effective model for plasmonic coupling: a rigorous derivation[J]. Physical Review B, 2014, 89(3): 035110. doi: 10.1103/PhysRevB.89.035110
    [53] DAVIS T J, HENTSCHEL M, LIU N, et al. Analytical model of the three-dimensional plasmonic ruler[J]. ACS Nano, 2012, 6(2): 1291-8.
    [54] BABA T. Slow light in photonic crystals[J]. Nature Photonics, 2008, 2(8): 465-473. doi: 10.1038/nphoton.2008.146
    [55] PAPASIMAKIS N, ZHELUDEV N I. Metamaterial-induced transparency: sharp fano resonances and slow light[J]. Optics and Photonics News, 2009, 20(10): 22-27. doi: 10.1364/OPN.20.10.000022
    [56] QIU M, JIA M, MA SH J, et al. Angular dispersions in terahertz metasurfaces: physics and applications[J]. Physical Review Applied, 2018, 9(5): 054050. doi: 10.1103/PhysRevApplied.9.054050
    [57] HAO J M, WANG J, LIU X L, et al. High performance optical absorber based on a plasmonic metamaterial[J]. Applied Physics Letters, 2010, 96(25): 251104. doi: 10.1063/1.3442904
    [58] LALANNE P, LEMERCIER-LALANNE D. On the effective medium theory of subwavelength periodic structures[J]. Journal of Modern Optics, 1996, 43(10): 2063-2085. doi: 10.1080/09500349608232871
    [59] ZHANG X Y, LI Q, LIU F F, et al. Controlling angular dispersions in optical metasurfaces[J]. Light:Science &Applications, 2020, 9: 76.
    [60] KRISTENSEN P T, HERRMANN K, INTRAVAIA F, et al. Modeling electromagnetic resonators using quasinormal modes[J]. Advances in Optics and Photonics, 2020, 12(3): 612-708. doi: 10.1364/AOP.377940
    [61] CHING E S C, LEUNG P T, YOUNG K. Optical Processes in Microcavities-the Role of Quasi-Normal Modes[M]. CHANG R K, CAMPILLO A J. Optical Processes in Microcavities. Singapore: World Scientific, 1996.
    [62] KRISTENSEN P T, DE LASSON J R, HEUCK M, et al. On the theory of coupled modes in optical cavity-waveguide structures[J]. Journal of Lightwave Technology, 2017, 35(19): 4247-4259. doi: 10.1109/JLT.2017.2714263
    [63] TRØST KRISTENSEN P, HEUCK M, MØRK J. Optimal switching using coherent control[J]. Applied Physics Letters, 2013, 102(4): 041107. doi: 10.1063/1.4789372
    [64] KRISTENSEN P T, DE LASSON J R, GREGERSEN N. Calculation, normalization, and perturbation of quasinormal modes in coupled cavity-waveguide systems[J]. Optics Letters, 2014, 39(22): 6359-6362. doi: 10.1364/OL.39.006359
    [65] LIN J, QIU M, ZHANG X Y, et al. Tailoring the lineshapes of coupled plasmonic systems based on a theory derived from first principles[J]. Light:Science &Applications, 2020, 9: 158.
  • 加载中
图(11)
计量
  • 文章访问数:  4021
  • HTML全文浏览量:  1715
  • PDF下载量:  914
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-30
  • 修回日期:  2021-02-26
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回