留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

先进光刻中的聚焦控制预算(I)-光路部分

钟志坚 李琛毅 李世光 郭磊 韦亚一

钟志坚, 李琛毅, 李世光, 郭磊, 韦亚一. 先进光刻中的聚焦控制预算(I)-光路部分[J]. 中国光学(中英文), 2021, 14(5): 1104-1119. doi: 10.37188/CO.2021-0033
引用本文: 钟志坚, 李琛毅, 李世光, 郭磊, 韦亚一. 先进光刻中的聚焦控制预算(I)-光路部分[J]. 中国光学(中英文), 2021, 14(5): 1104-1119. doi: 10.37188/CO.2021-0033
ZHONG Zhi-jian, LI Chen-yi, LI Shi-guang, GUO Lei, WEI Ya-yi. Budget analysis of focus control in advanced lithography (I) -optical path[J]. Chinese Optics, 2021, 14(5): 1104-1119. doi: 10.37188/CO.2021-0033
Citation: ZHONG Zhi-jian, LI Chen-yi, LI Shi-guang, GUO Lei, WEI Ya-yi. Budget analysis of focus control in advanced lithography (I) -optical path[J]. Chinese Optics, 2021, 14(5): 1104-1119. doi: 10.37188/CO.2021-0033

先进光刻中的聚焦控制预算(I)-光路部分

基金项目: 国家自然科学基金资助项目(No. 61804174;No. 61604172)
详细信息
    作者简介:

    钟志坚(1996—),男,江西赣州人,硕士研究生,2018年于武汉理工大学获得学士学位,主要从事光刻对焦控制与检测方面的研究。E-mail:zhongzhijian18@mails.ucas.ac.cn

    李世光(1973—),女,辽宁沈阳人,研究员,硕士生导师。1993年和1996年于哈尔滨工业大学分别获得学士、硕士学位,2005年于清华大学获得博士学位,2005-2011年分别于新加坡南洋理工大学和美国北卡罗来纳大学做博士后,主要从事光刻技术和光学测量的研究。E-mail:lishiguang@tsinghua.org.cn

  • 中图分类号: TP394.1;TH691.9

Budget analysis of focus control in advanced lithography (I) -optical path

Funds: Supported by National Natural Science Foundation of China (No. 61804174; No. 61604172)
More Information
  • 摘要: 随着大规模集成电路芯片制造的技术节点不断缩小,光刻机的聚焦控制变得尤为困难。为了保证硅片曝光的质量,需要快速、准确地将硅片在几十纳米的聚焦深度范围(DOF)内进行快速调整。因此,需要仔细分析光刻过程中导致焦点偏移或工艺窗口变化的各种因素,制定合理的聚焦控制预算,将各种误差因素控制在一定范围内。本文聚焦极紫外(EUV)光刻,综述包含EUV在内的先进光刻机中光路部分对聚焦控制有影响的各种因素,总结它们产生的原理及仿真、实验结果,为开展先进光刻聚焦控制预算研究提供参考。

     

  • 图 1  EUV光刻机中的光路示意图[11]

    Figure 1.  Schematic diagram of optical system of EUV lithography machine[11]

    图 2  NXE:3100在不同光照条件下(常规,环形,双极)获得的光刻胶图案的电子显微照片[14]

    Figure 2.  Electron micrographs of photoresist patterns obtained by NXE:3100 under conventional, circular, dipole illuminations[14]

    图 3  EUV入射光锥与出射光锥的重叠与不重叠状态

    Figure 3.  The overlapping and non-overlapping states of the exiting light cone and the incident light cone in EUV

    图 4  EUV掩模结构

    Figure 4.  Structure of EUV mask

    图 5  在双极TE照明下的一维图形(光栅)成像

    Figure 5.  One-dimensional graphic (grating) imaging under dipole TE illumination

    图 6  Kirchhoff和三维模型下的掩模最佳焦点的偏移情况[26]

    Figure 6.  Best focus shift of the mask with Kirchhoff and the 3D model[26]

    图 7  焦点偏移与pitch间的关系[27]

    Figure 7.  Relationship between focus shift and pitch[27]

    图 8  0级和1级的衍射相位随图形周期的变化情况[28]

    Figure 8.  Results of diffraction phase of the 0th and 1st order varying with pitch[28]

    图 9  64 nm、96 nm周期线条下的最佳焦点(点)和聚焦深度(柱)[34]

    Figure 9.  Best focus(point) and DOF(bar) of different pitches (64 nm, 96 nm)[34]

    图 10  掩模弯曲对聚焦偏移的影响[37]

    Figure 10.  Effect of mask bending on focus shift[37]

    图 11  EUV光刻机中的掩模聚焦偏移

    Figure 11.  Mask defocus of EUV lithography machine

    图 12  泽尼克多项式[41]

    Figure 12.  Zernike polynomials[41]

    图 13  像散与场曲对UDOF的影响[42]

    Figure 13.  Effects of astigmatism and field curvature on UDOF[42]

    图 14  曝光导致的透镜热效应

    Figure 14.  Lens heating caused by exposure

    图 15  (a)波前校正前的(b)波前校正后公共聚焦深度[44]

    Figure 15.  Common UDOFs (a) without and (b) with appling wavefront[44]

    图 16  杂散光对聚焦深度的影响[50]

    Figure 16.  Effect of flare on depth of focus[50]

    图 17  光刻胶三维效应导致最佳焦点偏移

    Figure 17.  Best focus shift caused by resist 3D effect

    图 18  亮掩模和暗掩模上不同图形的最佳焦点[56]

    Figure 18.  Best focus through pitch on bright and dark mask[56]

  • [1] China Taiwan Semiconductor Manufacturing Company. TSMC’S 5 nm (FinFET) technology[EB/OL]. [2021-04-17] https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_5nm.
    [2] DAN HUTCHESON G. Moore’s law, lithography, and how optics drive the semiconductor industry[J]. Proceedings of SPIE, 2018, 10583: 1058303.
    [3] 郭杰, 李世光, 赵焱, 等. 电子束硅片图形检测系统中的纳米级对焦控制技术[J]. 中国光学,2019,12(2):242-255. doi: 10.3788/co.20191202.0242

    GUO J, LI SH G, ZHAO Y, et al. Nano-scale focus control technology in electron beam wafer pattern inspection system[J]. Chinese Optics, 2019, 12(2): 242-255. (in Chinese) doi: 10.3788/co.20191202.0242
    [4] 孙裕文, 李世光, 叶甜春, 等. 纳米光刻中调焦调平测量系统的工艺相关性[J]. 光学学报,2016,36(8):0812001. doi: 10.3788/AOS201636.0812001

    SUN Y W, LI SH G, YE T CH, et al. Process dependency of focusing and leveling measurement system in nanoscale lithography[J]. Acta Optica Sinica, 2016, 36(8): 0812001. (in Chinese) doi: 10.3788/AOS201636.0812001
    [5] SHUMWAY J, NEAL N, MEYERS S, et al. Reduction and control of intrafield focus variation on 7nm technology[J]. Proceedings of SPIE, 2018, 10147: 101470B.
    [6] JANG J H, PARK T, PARK K D, et al. Focus control budget analysis for critical layers of flash devices[J]. Proceedings of SPIE, 2014, 9050: 90502F.
    [7] 段晨, 宗明成, 范伟, 等. 浸没式光刻机对焦控制技术研究[J]. 光学学报,2018,38(9):0912002. doi: 10.3788/AOS201838.0912002

    DUAN CH, ZONG M CH, FAN W, et al. Focus control technology in immersion lithography[J]. Acta Optica Sinica, 2018, 38(9): 0912002. (in Chinese) doi: 10.3788/AOS201838.0912002
    [8] 姚长呈, 巩岩. 深紫外光刻投影物镜温度特性研究[J]. 中国激光,2016,43(5):0516001. doi: 10.3788/CJL201643.0516001

    YAO CH CH, GONG Y. Research on temperature distribution of deep ultraviolet lithographic projection objective[J]. Chinese Journal of Lasers, 2016, 43(5): 0516001. (in Chinese) doi: 10.3788/CJL201643.0516001
    [9] VAN HAREN R, STEINERT S, MOURAILLE O, et al. The mask contribution as part of the intra-field on-product overlay performance[J]. Proceedings of SPIE, 2018, 11518: 1151813.
    [10] MASTENBROEK M. EUV industrialization high volume manufacturing with NXE3400B[J]. Proceedings of SPIE, 2018, 10809: 1080904.
    [11] WAGNER C, HARNED N. Lithography gets extreme[J]. Nature Photonics, 2010, 4(1): 24-26. doi: 10.1038/nphoton.2009.251
    [12] 甘雨, 张方, 朱思羽, 等. 光刻机照明系统光瞳特性参数的评估算法[J]. 中国激光,2019,46(3):0304007. doi: 10.3788/CJL201946.0304007

    GAN Y, ZHANG F, ZHU S Y, et al. Evaluation algorithm of pupil characteristic parameters in lithography illumination system[J]. Chinese Journal of Lasers, 2019, 46(3): 0304007. (in Chinese) doi: 10.3788/CJL201946.0304007
    [13] LOWISCH M, KUERZ P, CONRADI Q, et al.. Optics for ASML’s NXE: 3300B platform[C]. Proceedings of SPIE, 2013, 8679: 86791H.
    [14] HENDRICKX E, GRONHEID R, HERMANS J, et al. Readiness of EUV lithography for insertion into manufacturing: the IMEC EUV program[J]. Journal of Photopolymer Science and Technology, 2013, 26(5): 587-593. doi: 10.2494/photopolymer.26.587
    [15] LEE S H, ZHANG ZH Y. Process window study with various illuminations for EUV lithography applications[J]. Proceedings of SPIE, 2007, 6517: 65172P. doi: 10.1117/12.713447
    [16] MACK C, CHICHESTER W. Fundamental Principles of Optical Lithography: the Science of Microfabrication[M]. Chichester: Wiley, 2008: 60.
    [17] ZHAI A P, CAO Y P, CHEN B, et al. A novel method of partial coherence measuring for the illumination system and its defocus performance analysis[J]. Optik, 2013, 124(23): 6313-6317. doi: 10.1016/j.ijleo.2013.06.009
    [18] DE SIMONE D, KLJUCAR L, DAS P, et al. 28 nm pitch single exposure patterning readiness by metal oxide resist on 0.33 NA EUV lithography[J]. Proceedings of SPIE, 2021, 11609: 116090Q.
    [19] KNEER B, MIGURA S, KAISER W, et al. EUV lithography optics for sub-9 nm resolution[J]. Proceedings of SPIE, 2015, 9422: 94221G. doi: 10.1117/12.2175488
    [20] CONLEY W, ALAGNA P, SHIEH J, et al. The impact of lower light source bandwidth on sub-10 nm process node features[J]. Proceedings of SPIE, 2017, 10147: 1014707.
    [21] RUOFF V D M J, NEUMANN J T, SCHMITT-WEAVER E, et al. Polarization-induced astigmatism caused by topographic masks[J]. Proceedings of SPIE, 2007, 6730: 67301T.
    [22] TANABE H, SATO S, TAKAHASHI A. Fast 3D lithography simulation by convolutional neural network[J]. Proceedings of SPIE, 2020, 11518: 115180L.
    [23] HAO Y Y, LI Y Q, LI T, et al. The calculation and representation of polarization aberration induced by 3D mask in lithography simulation[J]. Proceedings of SPIE, 2017, 10460: 104601J.
    [24] 韦亚一. 超大规模集成电路先进光刻理论与应用[M]. 北京: 科学出版社, 2016: 103-105.

    WEI Y Y. Advanced Lithography Theory and Application for VLSI[M]. Beijing: Science Press, 2016: 103-105. (in Chinese)
    [25] AZPIROZ J T, ROSENBLUTH A E. Impact of sub-wavelength electromagnetic diffraction in optical lithography for semiconductor chip manufacturing[C]. Proceedings of the 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference, IEEE, 2013: 1-5.
    [26] SAIED M, FOUSSADIER F, BELLEDENT J, et al. Three-dimensional mask effects and source polarization impact on OPC model accuracy and process window[J]. Proceedings of SPIE, 2007, 6520: 65204Q. doi: 10.1117/12.715120
    [27] YAN P Y. Understanding Bossung curve asymmetry and focus shift effect in EUV lithography[J]. Proceedings of SPIE, 2002, 4562: 279-287. doi: 10.1117/12.458302
    [28] ERDMANN A. Topography effects and wave aberrations in advanced PSM technology[J]. Proceedings of SPIE, 2001, 4346: 345. doi: 10.1117/12.435734
    [29] BURKHARDT M, RAGHUNATHAN A. Best focus shift mechanism for thick masks[J]. Proceedings of SPIE, 2015, 9422: 94220X.
    [30] NAKAJIMA Y, SATO T, INANAMI R, et al. Aberration budget in extreme ultraviolet lithography[J]. Proceedings of SPIE, 2008, 6921: 69211A.
    [31] ERDMANN A, EVANSCHITZKY P, FÜHNER T. Mask diffraction analysis and optimization for EUV masks[J]. Proceedings of SPIE, 2009, 7271: 72711E.
    [32] ERDMANN A, EVANSCHITZKY P, NEUMANN J T, et al. Mask-induced best-focus shifts in deep ultraviolet and extreme ultraviolet lithography[J]. Journal of Micro/Nanolithography, 2016, 15(2): 021205. doi: 10.1117/1.JMM.15.2.021205
    [33] HAQUE R R, LEVINSON Z, SMITH B W. 3D mask effects of absorber geometry in EUV lithography systems[J]. Proceedings of SPIE, 2016, 9776: 97760F.
    [34] MOCHI I, PHILIPSEN V, GALLAGHER E, et al. Assist features: placement, impact, and relevance for EUV imaging[J]. Proceedings of SPIE, 2016, 9776: 97761S. doi: 10.1117/12.2220025
    [35] BOUMA A, MIYAZAKI J, VAN VEEN M, et al. Impact of mask absorber and quartz over-etch on mask 3D induced best focus shifts[J]. Proceedings of SPIE, 2014, 9231: 92310S. doi: 10.1117/12.2068155
    [36] SZUCS A, PLANCHOT J, FARYS V, et al. Best focus shift mitigation for extending the depth of focus[J]. Proceedings of SPIE, 2013, 8683: 868313. doi: 10.1117/12.2011114
    [37] INOUE S, ITOH M, ASANO M, et al. Desirable reticle flatness from focus deviation standpoint in optical lithography[J]. Journal of Micro/Nanolithography,MEMS,and MOEMS, 2002, 1(3): 307. doi: 10.1117/1.1503806
    [38] LIU P, XIE X B, LIU W, et al. Fast 3D thick mask model for full-chip EUVL simulations[J]. Proceedings of SPIE, 2013, 8679: 86790W. doi: 10.1117/12.2010818
    [39] SEARS M K, SMITH B W. Modeling the effects of pupil-manipulated spherical aberration in optical nanolithography[J]. Journal of Micro/Nanolithography,MEMS,and MOEMS, 2013, 12(1): 013008. doi: 10.1117/1.JMM.12.1.013008
    [40] BRUNNER T A. Impact of lens aberrations on optical lithography[J]. IBM Journal of Research and Development, 1997, 41(1-2): 57-67.
    [41] BEKAERT J, VAN LOOK L, VANDENBERGHE G, et al. Characterization and control of dynamic lens heating effects under high volume manufacturing conditions[J]. Proceedings of SPIE, 2011, 7973: 79730V. doi: 10.1117/12.881609
    [42] LEVINSON H J. Principles of Lithography[M]. 3rd ed. Bellingham, WA: SPIE Press, 2011: 40-41.
    [43] 李艳秋, 刘岩, 刘丽辉. 16 nm极紫外光刻物镜热变形对成像性能影响的研究[J]. 光学学报,2019,39(1):0122001. doi: 10.3788/AOS201939.0122001

    LI Y Q, LIU Y, LIU L H. Effect of thermal deformation on imaging performance for 16 nm extreme ultraviolet lithography objective[J]. Acta Optica Sinica, 2019, 39(1): 0122001. (in Chinese) doi: 10.3788/AOS201939.0122001
    [44] SEARS M K, BEKAERT J, SMITH B W. Lens wavefront compensation for 3D photomask effects in subwavelength optical lithography[J]. Applied Optics, 2013, 52(3): 314-322. doi: 10.1364/AO.52.000314
    [45] HO G H, CHENG A, CHEN CH J, et al. Lens-heating-induced focus drift of I-line step and scan: correction and control in a manufacturing environment[J]. Proceedings of SPIE, 2001, 4344: 289-296. doi: 10.1117/12.436722
    [46] 王帆, 王向朝, 马明英, 等. 光刻机投影物镜像差的现场测量技术[J]. 激光与光电子学进展,2004,41(6):33-37.

    WANG F, WANG X ZH, MA M Y, et al. In-situ measurement methods of lens aberration[J]. Laser &Optoelectronics Progress, 2004, 41(6): 33-37. (in Chinese)
    [47] CUI Y T. Fine-tune lens-heating-induced focus drift with different process and illumination settings[J]. Proceedings of SPIE, 2001, 4346: 1369-1378. doi: 10.1117/12.435675
    [48] CHANG Y S, WU M J, HUNG M Y, et al. Polygate within wafer CD uniformity improvement by the minimization of lens heating effect[J]. Proceedings of SPIE, 2001, 4404: 26-32. doi: 10.1117/12.425219
    [49] CHENG B J, LIU H CH, CUI Y T, et al. Improving image control by correcting the lens-heating focus drift[J]. Proceedings of SPIE, 2000, 4000: 818-826. doi: 10.1117/12.389075
    [50] LEE S H, SHROFF Y, CHANDHOK M. Flare and lens aberration requirements for EUV lithographic tools[J]. Proceedings of SPIE, 2005, 5751: 707-714. doi: 10.1117/12.604870
    [51] MONTCALM C, BAJT S, MIRKARIMI P B, et al. Multilayer reflective coatings for extreme-ultraviolet lithography[J]. Proceedings of SPIE, 1998, 3331: 42-51. doi: 10.1117/12.309600
    [52] FINDERS J. The impact of Mask 3D and Resist 3D effects in optical lithography[J]. Proceedings of SPIE, 2014, 9052: 905205.
    [53] PENG A, HSU S D, HOWELL R C, et al. Lithography-defect-driven source-mask optimization solution for full-chip optical proximity correction[J]. Applied Optics, 2021, 60(3): 616-620. doi: 10.1364/AO.408405
    [54] LIU X F, HOWELL R, HSU S, et al. EUV source-mask optimization for 7nm node and beyond[J]. Proceedings of SPIE, 2014, 9048: 90480Q. doi: 10.1117/12.2047584
    [55] WU Q. Key points in 14 nm photolithographic process development, challenges and process window capability[C]. Proceedings of 2017 China Semiconductor Technology International Conference, IEEE, 2017: 1-6.
    [56] JIA N N, YANG S H, KIM S, et al. Study of lens heating behavior and thick mask effects with a computational method[J]. Proceedings of SPIE, 2014, 9052: 905209.
    [57] 王丽萍. 长春光机所承担的国家科技重大专项项目“极紫外光刻关键技术研究”通过验收[J]. 分析仪器,2017(4):96.

    WANG L P. The project of “study of key technology for extreme-ultraviolet lithography” passed the acceptance inspection[J]. Analytical Instrumentation, 2017(4): 96. (in Chinese)
    [58] DENG X J, CHAO A, FEIKES J, et al. Experimental demonstration of the mechanism of steady-state microbunching[J]. Nature, 2021, 590(7847): 576-579. doi: 10.1038/s41586-021-03203-0
  • 加载中
图(18)
计量
  • 文章访问数:  3957
  • HTML全文浏览量:  2292
  • PDF下载量:  492
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-03-08
  • 网络出版日期:  2021-04-30
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回