留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于伴随仿真的偏振复用超构透镜

刘永健 张飞 谢婷 蒲明博 赵泽宇 李雄 马晓亮 沈同圣 罗先刚

刘永健, 张飞, 谢婷, 蒲明博, 赵泽宇, 李雄, 马晓亮, 沈同圣, 罗先刚. 基于伴随仿真的偏振复用超构透镜[J]. 中国光学, 2021, 14(4): 754-763. doi: 10.37188/CO.2021-0035
引用本文: 刘永健, 张飞, 谢婷, 蒲明博, 赵泽宇, 李雄, 马晓亮, 沈同圣, 罗先刚. 基于伴随仿真的偏振复用超构透镜[J]. 中国光学, 2021, 14(4): 754-763. doi: 10.37188/CO.2021-0035
LIU Yong-jian, ZHANG Fei, XIE Ting, PU Ming-bo, ZHAO Ze-yu, LI Xiong, MA Xiao-liang, SHEN Tong-sheng, LUO Xian-gang. Polarization-multiplexed metalens enabled by adjoint optimization[J]. Chinese Optics, 2021, 14(4): 754-763. doi: 10.37188/CO.2021-0035
Citation: LIU Yong-jian, ZHANG Fei, XIE Ting, PU Ming-bo, ZHAO Ze-yu, LI Xiong, MA Xiao-liang, SHEN Tong-sheng, LUO Xian-gang. Polarization-multiplexed metalens enabled by adjoint optimization[J]. Chinese Optics, 2021, 14(4): 754-763. doi: 10.37188/CO.2021-0035

基于伴随仿真的偏振复用超构透镜

doi: 10.37188/CO.2021-0035
基金项目: 中国博士后科学基金资助项目(No. 2020M680153);国家自然科学基金资助项目(No. 61975210,No. U20A20217)
详细信息
    作者简介:

    刘永健(1995—),男,山东烟台人,2018年于山东科技大学获得学士学位,现为中国科学院光电技术研究所硕士研究生,主要从事微纳器件的设计与制造方面的研究。E-mail: yongjianliu1995@163.com

    罗先刚(1970—),男,四川苍溪人,博士,研究员,博士生导师,中国工程院院士,2001年于中国科学院获得博士学位,主要研究方向包括微纳光学、表面等离子体光子学、亚波长电磁学和悬链线光学。E-mail:lxg@ioe.ac.cn

  • 中图分类号: TP394.1; TH691.9

Polarization-multiplexed metalens enabled by adjoint optimization

Funds: Supported by China Postdoctoral Science Foundation (No. 2020M680153); National Natural Science Foundation of China (No. 61975210, No. U20A20217)
More Information
  • 摘要: 偏振成像技术在目标探测、生物医学等领域具有重要应用价值,基于超构表面设计的偏振成像系统可以有效避免传统偏振成像系统存在的结构复杂、体积和质量大等问题,有利于实现光学系统微型化、轻量化和集成化。然而,传统超构表面设计方法忽略了超构表面结构的局部非周期性引起的近场电磁耦合,在大数值孔径的条件下会严重影响器件的衍射效率。为了解决这个问题,本文提出了一种基于边界优化的偏振复用超构透镜设计方法,并由此设计了一种能对xy偏振光独立调控的大数值孔径(~0.94)偏振成像超构透镜。在基于人工择优初始结构的优化设计中,通过参数扫描、人工择优的传统设计方法得到超构透镜初始结构,然后通过边界优化方法对超构透镜进行进一步的优化,其衍射效率相比于优化前可以提高20%左右;在基于均匀阵列初始结构的优化设计中,通过20次左右的迭代,超构透镜衍射效率可以达到92%左右。本文提出的优化设计方法可有效提高偏振复用超构表面器件效率,并且能够简化多功能超构表面的设计步骤,在偏振成像、光通信等领域具有应用前景。
  • 图  1  边界优化原理及流程示意图。(a) 正向仿真;(b)伴随仿真;(c) 优化算法流程图

    Figure  1.  Schematic diagram of boundary optimization principle and process. (a) Forward simulation. (b) Adjoint simulation. (c) Flow chart of the optimization algorithm

    图  2  (a)单元结构示意图;(b)64个单元结构的传输相位响应

    Figure  2.  (a) Schematic diagram of a unit cell; (b) propagation phase responses of 64 unit cells

    图  3  优化前后纳米柱沿(a) x方向和(b) y方向的宽度变化;(c)部分纳米柱优化前后对比图

    Figure  3.  Width changes of nanofins along the (a) x-direction and (b) y-direction before and after optimization. (c) Comparison of part of nanofins before and after optimization

    图  4  优化前(a) x偏振光和(b) y偏振光入射下的xz平面光强分布;优化后(c) x偏振光和(d) y偏振光入射下的xz平面光强分布;(e)~(h)沿着(a)~(d)中虚线绘制的归一化强度分布

    Figure  4.  Intensity distributions in the xz plane before optimization under the illumination of (a) x-polarized light and (b) y-polarized light. Intensity distributions in the xz plane after optimization under the illumination of (c) x-polarized light and (d) y-polarized light. (e)~(h) Normalized intensity profiles along the dashed lines are shown in (a)~(d)

    图  5  x偏振光入射时,(a)优化前和(b)优化后的相位分布;y偏振光入射时,(c)优化前和(d)优化后的相位分布

    Figure  5.  The phase distributions (a) before and (b) after optimization for the incident of x-polarized light. The phase distributions (c) before and (d) after optimization for the incident of y-polarized light

    图  6  优化过程中超构透镜的(a)绝对效率和(b)衍射效率

    Figure  6.  (a) Absolute efficiency and (b) diffraction efficiency of the optimized metalens during optimization

    图  7  (a) x偏振光和(b) y偏振光入射下,不同初始结构的超构透镜的绝对效率;(c) x偏振光和(d) y偏振光入射下,不同初始结构的超构透镜的衍射效率

    Figure  7.  Absolute efficiency of five metalenses with different initial structures during optimization under illumination of (a) x-polarized light and (b) y-polarized light. Diffraction efficiency of five metalenses with different initial structures during optimization under illumination of (c) x-polarized light and (d) y-polarized light

    图  8  优化过程中超构透镜的(a)绝对效率和(b)衍射效率;(c) x偏振光和(d) y偏振光入射下焦平面光强分布

    Figure  8.  (a) Absolute efficiency and (b) diffraction efficiency of the optimized metalens during optimization. Intensity distributions in the focal plane under illumination of (c) x-polarized light and (d) y-polarized light

  • [1] SALOMATINA-MOTTS E, NEEL V A, YAROSLAVSKAYA A N. Multimodal polarization system for imaging skin cancer[J]. Optics and Spectroscopy, 2009, 107(6): 884-890. doi: 10.1134/S0030400X0912008X
    [2] DUBREUIL M, DELROT P, LEONARD I, et al. Exploring underwater target detection by imaging polarimetry and correlation techniques[J]. Applied Optics, 2013, 52(5): 997-1005. doi: 10.1364/AO.52.000997
    [3] HUANG B J, LIU T G, HU H F, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838. doi: 10.1364/OE.24.009826
    [4] DEUZÉ J L, BRÉON F M, DEVAUX C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. Journal of Geophysical Research, 2001, 106(D5): 4913-4926. doi: 10.1029/2000JD900364
    [5] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [6] LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics,Mechanics &Astronomy, 2015, 58(9): 594201.
    [7] LUO X G. Subwavelength artificial structures: opening a new era for engineering optics[J]. Advanced Materials, 2019, 31(4): 1804680. doi: 10.1002/adma.201804680
    [8] YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839
    [9] ZHANG F, XIE X, PU M B, et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices[J]. Advanced Materials, 2020, 32(39): 1908194. doi: 10.1002/adma.201908194
    [10] 张飞, 郭迎辉, 蒲明博, 等. 基于非对称光子自旋—轨道相互作用的超构表面[J]. 光电工程,2020,47(10):200366. doi: 10.12086/oee.2020.200366

    ZHANG F, GUO Y H, PU M B, et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electronic Engineering, 2020, 47(10): 200366. (in Chinese) doi: 10.12086/oee.2020.200366
    [11] ZHANG F, PU M B, LI X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions[J]. Advanced Functional Materials, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295
    [12] LUO X G, ISHIHARA T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780-4782. doi: 10.1063/1.1760221
    [13] GAO P, YAO N, WANG CH T, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110. doi: 10.1063/1.4914000
    [14] DOU K H, XIE X, PU M B, et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging[J]. Opto-Electronic Advances, 2020, 3(4): 190005.
    [15] HUO P CH, ZHANG CH, ZHU W Q, et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Letters, 2020, 20(4): 2791-2798. doi: 10.1021/acs.nanolett.0c00471
    [16] SCHLICKRIEDE C, KRUK S S, WANG L, et al. Nonlinear imaging with all-dielectric metasurfaces[J]. Nano Letters, 2020, 20(6): 4370-4376. doi: 10.1021/acs.nanolett.0c01105
    [17] MA X L, PU M B, LI X, et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation[J]. Opto-Electronic Advances, 2019, 2(3): 180023.
    [18] GHOSH S K, DAS S, BHATTACHARYYA S. Transmittive-type triple-band linear to circular polarization conversion in THz region using graphene-based metasurface[J]. Optics Communications, 2021, 480: 126480. doi: 10.1016/j.optcom.2020.126480
    [19] PU M B, LI X, MA X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396
    [20] LUO X G. Catenary Optics[M]. Singapore: Springer, 2019.
    [21] LUO X G, PU M B, GUO Y H, et al. Catenary functions meet electromagnetic waves: opportunities and promises[J]. Advanced Optical Materials, 2020, 8(23): 2001194. doi: 10.1002/adom.202001194
    [22] LUO X G. Engineering Optics 2.0: A Revolution in Optical Theories, Materials, Devices and Systems[M]. Singapore: Springer, 2019.
    [23] ZHANG F, PU M B, LI X, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces[J]. Advanced Materials, 2021, 33(11): 2008157. doi: 10.1002/adma.202008157
    [24] ZHANG F, PU M B, LUO J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 319-325.
    [25] BALTHASAR MUELLER J P, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    [26] FAN Q B, LIU M Z, ZHANG CH, et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 2020, 125(26): 267402. doi: 10.1103/PhysRevLett.125.267402
    [27] ZHOU H Q, SAIN B, WANG Y T, et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 2020, 14(5): 5553-5559. doi: 10.1021/acsnano.9b09814
    [28] ZHANG CH, DIVITT S, FAN Q B, et al. Low-loss metasurface optics down to the deep ultraviolet region[J]. Light:Science &Applications, 2020, 9: 55.
    [29] YAN CH, LI X, PU M B, et al. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces[J]. ACS Photonics, 2019, 6(3): 628-633. doi: 10.1021/acsphotonics.8b01119
    [30] ZHANG S, HUO P CH, ZHU W Q, et al. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface[J]. Laser &Photonics Reviews, 2020, 14(9): 2000062.
    [31] YAN CH, LI X, PU M B, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Applied Physics Letters, 2019, 114(16): 161904. doi: 10.1063/1.5091475
    [32] FAN Q B, ZHU W Q, LIANG Y ZH, et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible[J]. Nano Letters, 2019, 19(2): 1158-1165. doi: 10.1021/acs.nanolett.8b04571
    [33] ARBABI A, ARBABI E, MANSOUREE M, et al. Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique[J]. Scientific Reports, 2020, 10(1): 7124. doi: 10.1038/s41598-020-64198-8
    [34] LIU CH X, MAIER S A, LI G X. Genetic-algorithm-aided meta-atom multiplication for improved absorption and coloration in nanophotonics[J]. ACS Photonics, 2020, 7(7): 1716-1722. doi: 10.1021/acsphotonics.0c00266
    [35] LI Y, HONG M H. Diffractive efficiency optimization in metasurface design via electromagnetic coupling compensation[J]. Materials, 2019, 12(7): 1005. doi: 10.3390/ma12071005
    [36] SONG CH T, PAN L ZH, JIAO Y H, et al. A high-performance transmitarray antenna with thin metasurface for 5g communication based on PSO (Particle Swarm Optimization)[J]. Sensors, 2020, 20(16): 4460. doi: 10.3390/s20164460
    [37] MILLER O D. Photonic design: from fundamental solar cell physics to computational inverse design[D]. Berkeley: University of California at Berkeley, 2012.
    [38] YANG J J, SELL D, FAN J A. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering[J]. Annalen der Physik, 2018, 530(1): 1700302. doi: 10.1002/andp.201700302
    [39] MANSOUREE M, KWON H, ARBABI E, et al. Multifunctional 2.5D metastructures enabled by adjoint optimization[J]. Optica, 2020, 7(1): 77-84. doi: 10.1364/OPTICA.374787
    [40] MANSOUREE M, MCCLUNG A, SAMUDRALA S, et al. Large-scale parametrized metasurface design using adjoint optimization[J]. ACS Photonics, 2021, 8(2): 455-463. doi: 10.1021/acsphotonics.0c01058
    [41] YANG J J, FAN J A. Topology-optimized metasurfaces: impact of initial geometric layout[J]. Optics Letters, 2017, 42(16): 3161-3164. doi: 10.1364/OL.42.003161
  • 加载中
图(8)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  85
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-02-26
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2021-07-28

目录

    /

    返回文章
    返回