留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调微纳滤波结构的研究进展

余晓畅 许雅晴 蔡佳辰 袁梦琦 高博 虞益挺

余晓畅, 许雅晴, 蔡佳辰, 袁梦琦, 高博, 虞益挺. 可调微纳滤波结构的研究进展[J]. 中国光学(中英文), 2021, 14(5): 1069-1088. doi: 10.37188/CO.2021-0044
引用本文: 余晓畅, 许雅晴, 蔡佳辰, 袁梦琦, 高博, 虞益挺. 可调微纳滤波结构的研究进展[J]. 中国光学(中英文), 2021, 14(5): 1069-1088. doi: 10.37188/CO.2021-0044
YU Xiao-chang, XU Ya-qing, CAI Jia-chen, YUAN Meng-qi, GAO Bo, YU Yi-ting. Progress of tunable micro-nano filtering structures[J]. Chinese Optics, 2021, 14(5): 1069-1088. doi: 10.37188/CO.2021-0044
Citation: YU Xiao-chang, XU Ya-qing, CAI Jia-chen, YUAN Meng-qi, GAO Bo, YU Yi-ting. Progress of tunable micro-nano filtering structures[J]. Chinese Optics, 2021, 14(5): 1069-1088. doi: 10.37188/CO.2021-0044

可调微纳滤波结构的研究进展

基金项目: 深圳市学科布局项目(No. JCYJ20180508151936092);国家自然科学基金项目(No. 51975483);陕西省重点研发计划项目(No. 2020ZDLGY01-03);宁波市自然基金重点项目(No. 202003N4033);西北工业大学高峰体验计划(No. 201912);中国科学院光谱成像重点实验室开放基金项目(No. LSIT201912W)
详细信息
    作者简介:

    余晓畅(1994—),男,安徽广德人,博士研究生,2016年在西北工业大学获得学士学位,主要从事微纳滤波及多光谱成像方面的研究。  E-mail:yuxiaochang@mail.nwpu.edu.cn

    许雅晴(2000—),女,河南登封人,西北工业大学本科生,主要从事微纳滤波结构、多光谱成像、微纳高光谱相机装配集成等方面的研究。E-mail:xyq1159@mail.nwpu.edu.cn

    虞益挺(1980—),男,浙江宁波人,博士,教授,博士生导师,主要从事微纳光学成像与传感方面的应用基础研究。E-mail:yyt@nwpu.edu.cn

  • 中图分类号: O436.1; O436.2; O436.3

Progress of tunable micro-nano filtering structures

Funds: Supported by The Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20180508151936092); National Natural Science Foundation of China (No. 51975483); Key Research and Development Project of Shaanxi Province (No. 2020ZDLGY01-03); Key Project of Ningbo Natural Science Foundation (No. 202003N4033); Peak Experience Project of Northwestern Polytechnical University (No. 201912); Open Foundation Project of the Key Laboratory of Spectroscopic Imaging of the Chinese Academy of Sciences (No. LSIT201912W)
More Information
  • 摘要: 传统的光谱成像系统体积较大、工作模式固定,难以满足日益复杂的应用需要。可调微纳滤波结构赋予了微型光谱成像系统轻量、灵活的独特优势,有望实现自适应、智能化的技术目标。本文综述了近些年来国内外已有的可调滤波方法和工作原理;论述了采用液晶及其他相变材料、诱导化学反应等静态式的可调方法,珐珀腔、微纳可调光栅等动态式的滤波结构以及机械拉伸、静电驱动、光驱动等实现手段;介绍了基于微流控芯片、石墨烯实现可调滤波的前沿工作;探讨了可调微纳滤波芯片面临的难题、挑战和未来的发展趋势。

     

  • 图 1  (a)偏振旋转器控制的亚表面非对称晶格纳米孔阵列示意图[18];(b)不同电压下的颜色输出:(1)没有输出分析器;(2)输出分析器与纳米孔晶格正交;(3)输出分析器与纳米孔晶格成135°;(4)输出分析器与纳米孔晶格成45°[16];(c)电可调谐滤波器构成:A为入口偏振器、B为等离子体纳米结构、C为四分之一波板、D为具有主延迟轴的液晶电池、E为具有固定取向的偏振器[19];(d)液晶等离子体纳米孔薄膜[20];(e)液晶铝纳米光栅电池的原理图[14]

    Figure 1.  (a) Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurfaces controlled by a polarization rotator[18]; (b) Experimental optical transmission. (1) No output analyzer; output analyzer (2) aligned orthogonal to nanohole lattice; (3) has a agle of 135° to nanopole lattice; (4) has a agle of 45° to nanopole lattice[16]; (c) elements of the filtering system. A is an entrance polarizer, B is the plasmonic nanostructures, C is a quarter waveplate, D is a liquid crystal cell and E is a polarizer with fixed orientation[19]; (d) switchable plasmonic film using nanoconfined liquid crystals[20]; (e) schematic of liquid-crystal tunable color filters based on aluminum metasurfaces[14]

    图 2  (a)在不同外加电压下液晶铝光栅滤波器的的透射色彩[14];(b)可调谐导模谐振滤波器示意图[23];(c)在不同的外加电压下,经过液晶偏振旋转器的线性偏振反射光的透射率极坐标图[23];(d)染料掺杂液晶全光偏振无关的可调导模共振滤波器[24];(e)由甲氧基偶氮苯染料的顺反异构转化引起液晶从N相到I相的等温相变的机理模型[24]

    Figure 2.  (a) Transmissive color appearance of the cells at various applied voltages[14]; (b) tunable polarizing reflector based on a liquid crystal-clad guided-mode resonator[23]; (c) polar graphs of transmittance of linearly polarised reflected light that has passed through an LC polarization rotator under various applied voltages[23]; (d)all-Optical and polarization-independent tunable guided-mode resonance filter based on a dye-doped liquid crystal incorporated with photonic crystal nanostructure[24]; (e) mechanism model for the isothermal phase transitions of LCs from Nematic phase(N) to isotropic phase(I) and I to N induced by 4-methoxyazobenzene, Fluka[24]

    图 3  (a)涂有ITO的玻璃衬底夹有液晶渗透的电可调透射型二氧化钛亚表面示意图[29];(b)在从0到12 V不断增加的DC电压下,与x方向夹角为(1)$\phi = {0^\circ }$,(2)$\phi = {45^\circ }$ 以及(3)$\phi = {90^\circ }$的入射偏振光在液晶渗透的TiO2亚表面电调谐下的实验结果,其中红色曲线表示电共振位置、黄色曲线表示磁共振位置[29];(c)集成到液晶盒中的硅纳米盘亚表面示意图[30]

    Figure 3.  (a) Schematic diagram of electrically tunable all dielectric TiO2 metasurfaces embedded in thin-layer nematic liquid crystals[29]; (b) experimental results of electrical tuning of the liquid crystal infiltrated TiO2 metasurface for the incident light polarization directions aligned at (1) $\phi = {0^\circ }$, (2) $\phi = {45^\circ }$ and (3) $\phi = {90^\circ }$ under the increased DC voltages from 0 to 12 V. The symbol-line curves mark out the movement of electric (red) and magnetic (yellow) resonance positions under the applied voltage[29]; (c) schematic diagram of active tuning of all-dielectric metasurfaces based on liquid crystals[30]

    图 4  (a)GST不同相态下介电常数与光子能量的关系[31];(b)GST不同相态下吸收系数与光子能量的关系[31]

    Figure 4.  (a) Relationship between dielectric constant and photon energy in different phase states of GST[31]; (b) relationship between absorption coefficient and photon energy in different phase states of GST[31]

    图 5  (a)ITO / GST / ITO器件示意图[35];(b)集成全光子非易失性多级存储器[36];(c)集成光子突触示意图[37];(d)基于相变材料的光学可重构超表面光子器件[38]

    Figure 5.  (a) Schematic diagram of ITO / GST / ITO device[35]; (b) integrated all-photonic non-volatile multi-level memory[36]; (c) schematic diagram of integrated photonic synapse[37]; (d) optically reconfigurable metasurfaces and photonic devices based on phase change materials[38]

    图 6  (a)可控制辐射通过与否的辐射冷却系统[39],由底部的VO2-Ge多层吸收器和顶部的滤波器组成;(b)基于VO2的热可调宽带吸收器示意图[40];(c)VO2混合式开环谐振装置示意图[42];(d)聚对苯二甲酸乙二酯衬底上未掺杂W和W掺杂的VO2薄膜图像;(e)使用MBE技术在蓝宝石衬底上生长的VO2薄膜的XRD图谱[45]

    Figure 6.  (a) A radiant cooling system that can control the passage of radiation[39], consisting of a VO2-Ge multilayer absorber on the bottom and a filter on the top; (b) schematic diagram of a thermally adjustable broadband absorber based on VO2[40]; (c) schematic diagram of VO2 hybrid open-loop resonator device[42]; (d) surface morphology images of VO2 film before and after W doping[44]; (e) XRD pattern of VO2 thin film grown on sapphire substrate by MBE technique[45]

    图 7  (a)使用SmNiO3薄膜器件示意图[46];(b)使用Pt光栅的薄膜SmNiO3器件示意图[46];(c)等离子超表面与SmNiO3薄膜组成的器件结构图[46];(d)模拟得到的SmNiO3薄膜器件、Pt光栅结合薄膜SmNiO3器件各自的光透过率变化曲线[46];(e)玻璃/ FTO / NiOx / CsPbI3-xBrx / ZnO / Al或ITO的新型光伏玻璃架构示意图[47]

    Figure 7.  (a) Schematic diagram of SmNiO3 thin film device[46]; (b) schematic diagram of thin film SmNiO3 device using Pt grating[46]; (c) structure diagram of the device composed of plasma metasurface and SmNiO3 thin film[46]; (d) light transmittance curves of SmNiO3 thin film device and Pt grating combined with SmNiO3 thin film device are obtained by simulation[46]; (e) schematic diagram of a new photovoltaic glass architecture of glass / FTO / NiOx /CsPbI3-xBrx / ZnO / Al or ITO[47].

    图 8  (a)新型电致变色器件设计[50];(b)结合电致变色和能量储存的伪电容玻璃窗的器件制备和工作原理[51];(c)FP腔结合化学反应的设计思路[53]

    Figure 8.  (a) Design of the new electrochromic device[50]; (b) preparation and working principle of pseudocapacitive glass windows that combines electrochromism and energy storage[51]; (c) design idea of FP-cavity combined with chemical reaction[53]

    图 9  (a)一种典型的石墨烯超材料纳米结构器件示意图[56];(b)基于L形石墨烯超材料的器件设计[58];(c)基于金属石墨烯超材料的双带阻滤波器示意图[59]

    Figure 9.  (a)Schematic diagram of a typical graphene metamaterial nanostructured device[56]; (b) device design based on L-shape graphene metamaterials[58]; (c) schematic diagram of dual band stop filter based on metal-graphene metamaterial[59]

    图 10  (a)填充液体后的微流控亚表面[65];基于亚波长光栅的微流控通道可调滤波结构俯视图(b)和横截面(c)示意图[62]T为光栅的周期,H为槽深,$w $为两个光栅之间的间距,$\theta $为入射角,${{{n}}_s}$为基底的折射率,${{{n}}_h}$为光栅区介质折射率,${{{n}}_l}$为微流体通道内流体折射率;(d)在不同溶剂环境中,采用明场显微镜观察二氧化钛表面的反射颜色[63];(e)多功能偏振转换器[64]

    Figure 10.  (a)Sample of liquid-metal-based metasurface filled with liquid[65]; (b) top view and (c) cross section of tunable narrow-band filter with sub-wavelength grating structure by micro-optofluidic technique[62]. T is grating period[62], H is grating depth, w is the distance between two gratings, θ is incident angle; ns is the refractive index of substrate, nh is the refractive index of gratings, nl is the refractive index of liquid; (d) color images of the TiO2 metasurface in different types of liquid[63]; (e) broadband wide-angle multifunctional polarization[64]

    图 11  (a)可调珐珀滤波器的MEMS结构横截面图[66];(b)Z型壁桥在25.5 V静电力驱动下的变形模拟仿真[66];(c)使用NIL制造的圆盘形谐振器的SEM图像及静电驱动式动态滤波可调滤波器[69]

    Figure 11.  (a) Cross section of MEMS structure of tunable Fabry-Pérot filter[66]; (b) simulation of deformation of Z-type wall bridge driven by 25.5 V electrostatic force[66]; (c) SEM image of disk resonator manufactured by NIL and electrostatic driving dynamic filter tunable filter[69]

    图 12  (a)大批量生产的MOEMS模块[70];(b)中小批量生产的压电驱动式可调珐珀滤波器模块[70];(c)TAM和TLNM示意图[71]

    Figure 12.  (a) MOEMS module for mass production[70]; (b) piezo driven adjustable Fabry Perot filter module for medium and small batch production[70]; (c) schematic diagram of TAM and TLNM[71]

    图 13  (a)基本的光栅光阀结构[73];(b)光栅光阀的反射状态和衍射状态[73];(c)PDMS闪耀透射光栅二维等密度拉伸模型[74];(d)主动调谐光栅耦合器工作原理[75]

    Figure 13.  (a)The structure of grating light valve[73]; (b) reflecting modes and diffracting modes of GLV[73]; (c) two-dimensional isometric density stretching model of PDMS blazed transmission grating[74]; (d) working principles of MEMS-based tunable grating coupler[75]

    图 14  (a)用于布拉格光栅的可变形滑动结构[76];(b)可调光栅的工作原理[80];(c)梳状制动器驱动光栅[80]

    Figure 14.  (a) Deformable slides used for tuning fiber Bragg gratings[76]; (b) working principles of tunable gratings[80]; (c) low-power optical beam steering by microelectromechanical waveguide gratings[80]

  • [1] 吴正容, 白广周. 美国弹道导弹预警探测识别技术发展分析[J]. 飞行器测控学报,2016,35(6):415-421.

    WU ZH R, BAI G ZH. Analysis of US ballistic missile warning and recognition technology development[J]. Journal of Spacecraft TT &C Technology, 2016, 35(6): 415-421. (in Chinese)
    [2] 余晓畅, 赵建村, 虞益挺. 像素级光学滤波-探测集成器件的研究进展[J]. 光学 精密工程,2019,27(5):999-1012. doi: 10.3788/OPE.20192705.0999

    YU X CH, ZHAO J C, YU Y T. Research progress of pixel-level integrated devices for spectral imaging[J]. Optics and Precision Engineering, 2019, 27(5): 999-1012. (in Chinese) doi: 10.3788/OPE.20192705.0999
    [3] DICKSON W, WURTZ G A, EVANS P R, et al. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal[J]. Nano Letters, 2008, 8(1): 281-286. doi: 10.1021/nl072613g
    [4] KNIGHT M W, KING N S, LIU L F, et al. Aluminum for plasmonics[J]. ACS Nano, 2014, 8(1): 834-840. doi: 10.1021/nn405495q
    [5] TSENG M L, YANG J, SEMMLINGER M, et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response[J]. Nano Letters, 2017, 17(10): 6034-6039. doi: 10.1021/acs.nanolett.7b02350
    [6] HSIAO V K S, ZHENG Y B, JULURI B K, et al. Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals[J]. Advanced Materials, 2008, 20(18): 3528-3532. doi: 10.1002/adma.200800045
    [7] SI G Y, ZHAO Y H, LEONG E S P, et al. Liquid-crystal-enabled active plasmonics: a review[J]. Materials, 2014, 7(2): 1296-1317. doi: 10.3390/ma7021296
    [8] HSIAO Y C, SU CH W, YANG Z H, et al. Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal[J]. RSC Advances, 2016, 6(87): 84500-84504. doi: 10.1039/C6RA11428H
    [9] CHEN K P, YE S CH, YANG CH Y, et al. Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals[J]. Optics Express, 2016, 24(15): 16815-16821. doi: 10.1364/OE.24.016815
    [10] GILARDI G, DONISI D, SERPENGÜZEL A, et al. Liquid-crystal tunable filter based on sapphire microspheres[J]. Optics Letters, 2009, 34(21): 3253-3255. doi: 10.1364/OL.34.003253
    [11] KOMAR A, FANG ZH, BOHN J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Applied Physics Letters, 2017, 110(7): 071109. doi: 10.1063/1.4976504
    [12] LIU Y J, SI G Y, LEONG E S P, et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays[J]. Advanced Materials, 2012, 24(23): OP131-OP135.
    [13] FRANKLIN D, CHEN Y, VAZQUEZ-GUARDADO A, et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces[J]. Nature Communications, 2015, 6: 7337. doi: 10.1038/ncomms8337
    [14] XIE Z W, YANG J H, VASHISTHA V, et al. Liquid-crystal tunable color filters based on aluminum metasurfaces[J]. Optics Express, 2017, 25(24): 30764-30770. doi: 10.1364/OE.25.030764
    [15] 吴梦, 梁西银, 孙对兄, 等. 基于表面等离子激元的非对称矩形环腔电可调滤波器设计[J]. 光学学报,2020,40(14):1423001. doi: 10.3788/AOS202040.1423001

    WU M, LIANG X Y, SUN D X, et al. Design of asymmetric rectangular ring resonance cavity electrically adjustable filter based on surface plasmon polaritons[J]. Acta Optica Sinica, 2020, 40(14): 1423001. (in Chinese) doi: 10.3788/AOS202040.1423001
    [16] BARTHOLOMEW R, WILLIAMS C, KHAN A, et al. Plasmonic nanohole electrodes for active color tunable liquid crystal transmissive pixels[J]. Optics Letters, 2017, 42(14): 2810-2813. doi: 10.1364/OL.42.002810
    [17] 曹水艳. 表面等离子体结构聚焦和吸收特性的研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2013.

    CAO SH Y. Study on the property of focusing and absorption of plasmonic nanostrucutres[D]. Changchun: Changchun Institute of Optics, Fine Mehcanics and Physics, Chinese Academy of Sciences, 2013. (in Chinese)
    [18] LEE Y, PARK M K, KIM S, et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics, 2017, 4(8): 1954-1966. doi: 10.1021/acsphotonics.7b00249
    [19] DRIENCOURT L, FEDERSPIEL F, KAZAZIS D, et al. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals[J]. ACS Photonics, 2020, 7(2): 444-453. doi: 10.1021/acsphotonics.9b01404
    [20] RYU S H, YOON D K. Switchable plasmonic film using nanoconfined liquid crystals[J]. ACS Applied Materials &Interfaces, 2017, 9(29): 25057-25061.
    [21] 樊丽娜, 马军山. 兼具反射和透射模式的共振波导光栅滤波器的设计[J]. 中国光学,2020,13(5):1147-1157. doi: 10.37188/CO.2020-0072

    FAN L N, MA J SH. Design of resonant waveguide grating filter with reflection and transmission modes[J]. Chinese Optics, 2020, 13(5): 1147-1157. (in Chinese) doi: 10.37188/CO.2020-0072
    [22] REN ZH B, SUN Y H, LIN Z H, et al. Tunable guided-mode resonance filters for multi-primary colors based on polarization rotation[J]. IEEE Photonics Technology Letters, 2018, 30(21): 1858-1861. doi: 10.1109/LPT.2018.2870059
    [23] CHANG L M, YIN CH C, LIN C Y, et al. Tunable polarizing reflector based on liquid crystal-clad guided-mode resonator[J]. Liquid Crystals, 2021, 48(6): 806-811. doi: 10.1080/02678292.2020.1817586
    [24] LIN T Y, LIN J H, LIN J D, et al. All-optical and polarization-independent tunable guided-mode resonance filter based on a dye-doped liquid crystal incorporated with photonic crystal nanostructure[J]. Journal of Lightwave Technology, 2020, 38(4): 820-826. doi: 10.1109/JLT.2019.2950098
    [25] 赵文宇. 超表面微纳结构的相位操控及模式耦合特性[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHAO W Y. Phase manipulation and mode coupling in metasurface nanostructures[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [26] 周紫葳. 液晶基可调谐全介质超表面的研究[D]. 北京: 北京邮电大学, 2019.

    ZHOU Z W. Tunable all-dielectric metasurfaces based on liquid crystals[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)
    [27] 张庆. 纳米尺度光场调控: 全介质超表面及二维材料极化激元[D]. 绵阳: 中国工程物理研究院, 2019.

    ZHANG Q. Light Manipulation at the nanoscale: all dielectric metasurfaces and two-dimensional material polaritons[D]. Mianyang: China Academy of Engineering Physics, 2019. (in Chinese)
    [28] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [29] SUN M Y, XU X W, SUN X W, et al. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals[J]. Scientific Reports, 2019, 9(1): 8673. doi: 10.1038/s41598-019-45091-5
    [30] SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 2015, 9(4): 4308-4315. doi: 10.1021/acsnano.5b00723
    [31] PARK J W, EOM S H, LEE H, et al. Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory[J]. Physical Review B, 2009, 80(11): 115209. doi: 10.1103/PhysRevB.80.115209
    [32] KARVOUNIS A, GHOLIPOUR B, MACDONALD K F, et al. All-dielectric phase-change reconfigurable metasurface[J]. Applied Physics Letters, 2016, 109(5): 051103. doi: 10.1063/1.4959272
    [33] 王曼婷. 基于相变材料的光调制器设计[D]. 北京: 北京邮电大学, 2019.

    WANG M T. Design of optical modulator based on phase change materials[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)
    [34] 陈婧. 纳米尺度下锗锑碲相变材料制备及光电性质[D]. 南京: 南京大学, 2014.

    CHEN J. The optical and electrical properties of Ge2Sb2Te5 thin films in nanoscale[D]. Nanjing: Nanjing University, 2014. (in Chinese)
    [35] HOSSEINI P, WRIGHT C D, BHASKARAN H. An optoelectronic framework enabled by low-dimensional phase-change films[J]. Nature, 2014, 511(7508): 206-211. doi: 10.1038/nature13487
    [36] RÍOS C, STEGMAIER M, HOSSEINI P, et al. Integrated all-photonic non-volatile multi-level memory[J]. Nature Photonics, 2015, 9(11): 725-732. doi: 10.1038/nphoton.2015.182
    [37] CHENG ZH G, RÍOS C, PERNICE W H P, et al. On-chip photonic synapse[J]. Science Advances, 2017, 3(9): e1700160. doi: 10.1126/sciadv.1700160
    [38] WANG Q, ROGERS E T F, GHOLIPOUR B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247
    [39] ZHANG W W, QI H, SUN A T, et al. Periodic trapezoidal VO2-Ge multilayer absorber for dynamic radiative cooling[J]. Optics Express, 2020, 28(14): 20609-20623. doi: 10.1364/OE.396171
    [40] LEI L, LOU F, TAO K Y, et al. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition[J]. Photonics Research, 2019, 7(7): 734-741. doi: 10.1364/PRJ.7.000734
    [41] DRISCOLL T, BASOV D N, STARR A F, et al. Free-space microwave focusing by a negative-index gradient lens[J]. Applied Physics Letters, 2006, 88(8): 081101. doi: 10.1063/1.2174088
    [42] DRISCOLL T, PALIT S, QAZILBASH M M, et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J]. Applied Physics Letters, 2008, 93(2): 024101. doi: 10.1063/1.2956675
    [43] 周良. 开环谐振器在滤波器及天线中的应用研究[D]. 南京: 南京航空航天大学, 2011.

    ZHOU L. Research on split-ring resonator for filter and antenna applications[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
    [44] CHAE J Y, LEE D, LEE D W, et al. Direct transfer of thermochromic tungsten-doped vanadium dioxide thin-films onto flexible polymeric substrates[J]. Applied Surface Science, 2021, 545: 148937. doi: 10.1016/j.apsusc.2021.148937
    [45] 孙洪君, 王敏焕, 边继明, 等. MBE技术蓝宝石衬底上生长VO2薄膜及其太赫兹和金属–绝缘体相变特性研究[J]. 无机材料学报,2017,32(4):437-442. doi: 10.15541/jim20160456

    SUN H J, WANG M H, BIAN J M, et al. Terahertz and metal-insulator transition properties of VO2 film grown on sapphire substrate with MBE[J]. Journal of Inorganic Materials, 2017, 32(4): 437-442. (in Chinese) doi: 10.15541/jim20160456
    [46] LI ZH Y, ZHOU Y, QI H, et al. Correlated perovskites as a new platform for super-broadband-tunable photonics[J]. Advanced Materials, 2016, 28(41): 9117-9125. doi: 10.1002/adma.201601204
    [47] LIN J, LAI M L, DOU L T, et al. Thermochromic halide perovskite solar cells[J]. Nature Materials, 2018, 17(3): 261-267. doi: 10.1038/s41563-017-0006-0
    [48] 钱晶, 付中玉, 李昕. 导电聚合物基电致变色器件的研究进展[J]. 化学研究与应用,2008,20(11):1397-1404. doi: 10.3969/j.issn.1004-1656.2008.11.002

    QIAN J, FU ZH Y, LI X. Research progress of electrochromic devices based on conducting polymers[J]. Chemical Research and Application, 2008, 20(11): 1397-1404. (in Chinese) doi: 10.3969/j.issn.1004-1656.2008.11.002
    [49] DEB S K. A novel electrophotographic system[J]. Applied Optics, 1969, 8 Suppl 1: 192-195.
    [50] HAUCH A, GEORG A, BAUMGÄRTNER S, et al. New photoelectrochromic device[J]. Electrochimica Acta, 2001, 46(13-14): 2131-2136. doi: 10.1016/S0013-4686(01)00391-7
    [51] YANG P H, SUN P, CHAI ZH SH, et al. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage[J]. Angewandte Chemie International Edition, 2014, 53(44): 11935-11939. doi: 10.1002/anie.201407365
    [52] YAMAZAKI S, ISOYAMA K, SHIMIZU D. Visualization of ultraviolet irradiation using WO3-cellulose derivatives composite film[J]. Optical Materials, 2020, 106: 109929. doi: 10.1016/j.optmat.2020.109929
    [53] CHEN Y Q, DUAN X Y, MATUSCHEK M, et al. Dynamic color displays using stepwise cavity resonators[J]. Nano Letters, 2017, 17(9): 5555-5560. doi: 10.1021/acs.nanolett.7b02336
    [54] HANSON G W. Corrections to “dyadic green's functions for an anisotropic, non-local model of biased graphene” [Mar 08 747-757][J]. IEEE Transactions on Antennas And Propagation, 2012, 60(12): 6065. doi: 10.1109/TAP.2012.2214020
    [55] HANSON G W. Erratum: “Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene” [J. Appl. Phys. 103, 064302 (2008)][J]. Journal of Applied Physics, 2013, 113(2): 029902. doi: 10.1063/1.4776680
    [56] CHEN P Y, ALÙ A. Terahertz metamaterial devices based on graphene nanostructures[J]. IEEE Transactions on Terahertz Science And Technology, 2013, 3(6): 748-756. doi: 10.1109/TTHZ.2013.2285629
    [57] DAWLATY J M, SHIVARAMAN S, STRAIT J, et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible[J]. Applied Physics Letters, 2008, 93(13): 131905. doi: 10.1063/1.2990753
    [58] CHENG H, CHEN SH Q, YU P, et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial[J]. Applied Physics Letters, 2013, 103(22): 223102. doi: 10.1063/1.4833757
    [59] LIU Y, ZHONG R B, LIAN ZH, et al. Dynamically tunable band stop filter enabled by the metal-graphene metamaterials[J]. Scientific Reports, 2018, 8: 2828. doi: 10.1038/s41598-018-21085-7
    [60] 汤炳书, 孙成祥. 多层石墨烯纳米膜的中红外窄带滤波特性调节[J]. 光学 精密工程,2019,27(12):2549-2554. doi: 10.3788/OPE.20192712.2549

    TANG B SH, SUN CH X. Adjustment for mid-infrared narrow-bandfiltering charcteristic in multilayer graphene nanofilms[J]. Optics and Precision Engineering, 2019, 27(12): 2549-2554. (in Chinese) doi: 10.3788/OPE.20192712.2549
    [61] 余明芬, 曾洪梅, 张桦, 等. 微流控芯片技术研究概况及其应用进展[J]. 植物保护,2014,40(4):1-8. doi: 10.3969/j.issn.0529-1542.2014.04.001

    YU M F, ZENG H M, ZHANG H, et al. Research progress in microfluidics and its applications[J]. Plant Protection, 2014, 40(4): 1-8. (in Chinese) doi: 10.3969/j.issn.0529-1542.2014.04.001
    [62] 毛强, 唐雄贵, 孟方, 等. 基于亚波长光栅结构的微流控可调窄带滤波器设计与分析[J]. 激光与光电子学进展,2019,56(4):042301.

    MAO Q, TANG X G, MENG F, et al. Tunable narrow-band filter with sub-wavelength grating structure by micro-optofluidic technique[J]. Laser &Optoelectronics Progress, 2019, 56(4): 042301. (in Chinese)
    [63] SUN SH, YANG W H, ZHANG CH, et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces[J]. ACS Nano, 2018, 12(3): 2151-2159. doi: 10.1021/acsnano.7b07121
    [64] WU P C, ZHU W M, SHEN ZH X, et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Advanced Optical Materials, 2017, 5(7): 1600938. doi: 10.1002/adom.201600938
    [65] KIM H K, LEE D, LIM S. A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications[J]. Sensors, 2016, 16(8): 1246. doi: 10.3390/s16081246
    [66] MENG Q H, CHEN S H, LAI J J, et al. Multi-physics simulation and fabrication of a compact 128× 128 micro-electro-mechanical system Fabry-Perot cavity tunable filter array for infrared hyperspectral imager[J]. Applied Optics, 2015, 54(22): 6850-6856. doi: 10.1364/AO.54.006850
    [67] PEERLINGS J, DEHE A, VOGT A, et al. Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter[J]. IEEE Photonics Technology Letters, 1997, 9(9): 1235-1237. doi: 10.1109/68.618489
    [68] MANNILA R, NÄSILÄ A, VIHERKANTO K, et al. Spectral imager based on Fabry-Perot interferometer for Aalto-1 nanosatellite[J]. Proceedings of SPIE, 2013, 8870: 887002. doi: 10.1117/12.2023299
    [69] EBERMANN M, NEUMANN N, HILLER K, et al. Tunable MEMS Fabry-Perot filters for infrared microspectrometers: a review[J]. Proceedings of SPIE, 2016, 9760: 97600H.
    [70] MALINEN J, RISSANEN A, SAARI H, et al. Advances in miniature spectrometer and sensor development[J]. Proceedings of SPIE, 2014, 9101: 91010C.
    [71] LIN Y SH, DAI J, ZENG ZH Y, et al. Metasurface color filters using Aluminum and Lithium Niobate configurations[J]. Nanoscale Research Letters, 2020, 15(1): 77. doi: 10.1186/s11671-020-03310-3
    [72] HUNG E S, SENTURIA S D. Extending the travel range of analog-tuned electrostatic actuators[J]. Journal of Microelectromechanical Systems, 1999, 8(4): 497-505. doi: 10.1109/84.809065
    [73] 周南权, 陶纯匡, 崔胜利. 基于光栅光阀可调谐半导体激光器外腔结构的设计研究[J]. 激光杂志,2008,29(3):8-9. doi: 10.3969/j.issn.0253-2743.2008.03.004

    ZHOU N Q, TAO CH K, CUI SH L. The design of external cavity structure in tunable semiconductor laser based on grating light valve[J]. Laser Journal, 2008, 29(3): 8-9. (in Chinese) doi: 10.3969/j.issn.0253-2743.2008.03.004
    [74] XU M J, HUANG Y SH, NI ZH J, et al. Two-dimensional stretchable blazed wavelength-tunable grating based on PDMS[J]. Applied Optics, 2020, 59(30): 9614-9620. doi: 10.1364/AO.402461
    [75] YU W, GAO SH Q, LIN Y SH, et al. MEMS-based tunable grating coupler[J]. IEEE Photonics Technology Letters, 2019, 31(2): 161-164. doi: 10.1109/LPT.2018.2887254
    [76] LUO F, YEH T F. Tuning fiber bragg gratings by deformable slides[J]. Journal of Lightwave Technology, 2018, 36(17): 3746-3751. doi: 10.1109/JLT.2018.2850354
    [77] AXELROD R, SHACHAM-DIAMAND Y, GOLUB M A. Tunable resonance-domain diffraction gratings based on electrostrictive polymers[J]. Applied Optics, 2017, 56(7): 1817-1825. doi: 10.1364/AO.56.001817
    [78] WANG F, JIA SH H, WANG Y L, et al. Near-infrared light-controlled tunable grating based on graphene/elastomer composites[J]. Optical Materials, 2018, 76: 117-124. doi: 10.1016/j.optmat.2017.12.004
    [79] 燕斌, 苑伟政, 虞益挺, 等. 一种新型SOG周期可调光栅的制作及其衍射性能测试[J]. 光学学报,2010,30(11):3128-3132. doi: 10.3788/AOS20103011.3128

    YAN B, YUAN W ZH, YU Y T, et al. Fabrication and experimental investigation of diffraction characteristics for a pitch-tunable grating based on SOG process[J]. Acta Optica Sinica, 2010, 30(11): 3128-3132. (in Chinese) doi: 10.3788/AOS20103011.3128
    [80] ERRANDO-HERRANZ C, LE THOMAS N, GYLFASON K B. Low-power optical beam steering by microelectromechanical waveguide gratings[J]. Optics Letters, 2019, 44(4): 855-858. doi: 10.1364/OL.44.000855
    [81] 李晓莹, 吴焱, 虞益挺, 等. 闪耀角可调微型可编程光栅的优化设计与仿真模拟[J]. 光子学报,2016,45(4):0405002. doi: 10.3788/gzxb20164504.0405002

    LI X Y, WU Y, YU Y T, et al. Optimization design and numerical simulation of micro programmable gratings with tunable blazed angle[J]. Acta Photonica Sinica, 2016, 45(4): 0405002. (in Chinese) doi: 10.3788/gzxb20164504.0405002
    [82] CHEN L H, BUSFIELD J J C, CARPI F. Electrically tunable directional light scattering from soft thin membranes[J]. Optics Express, 2020, 28(14): 20669-20685. doi: 10.1364/OE.392015
    [83] VALENTE J, OU J Y, PLUM E, et al. A magneto-electro-optical effect in a plasmonic nanowire material[J]. Nature Communications, 2015, 6(1): 7021. doi: 10.1038/ncomms8021
    [84] SHENG W J, PENG G D, YANG N, et al. Suppression of sweeping fluctuation of Fabry-Perot filter in fiber Bragg grating interrogation using PSO-based self-adaptive sampling[J]. Mechanical Systems and Signal Processing, 2020, 142: 106724. doi: 10.1016/j.ymssp.2020.106724
  • 加载中
图(14)
计量
  • 文章访问数:  3110
  • HTML全文浏览量:  1575
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-18
  • 修回日期:  2021-03-18
  • 网络出版日期:  2021-05-15
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回